
IBM Parallel Environment Developer Edition
High Performance Computing Toolkit
Version 2 Release 2

Installation and Usage Guide

SC23-7287-01

IBM

IBM Parallel Environment Developer Edition
High Performance Computing Toolkit
Version 2 Release 2

Installation and Usage Guide

SC23-7287-01

IBM

Note
Before using this information and the product it supports, read the information in “Notices” on page 277.

This edition applies to version 2, release 2, modification 0 of the IBM Parallel Environment Developer Edition High
Performance Computing Toolkit (HPC Toolkit) (product number 5765-PD2) and to all subsequent releases and
modifications until otherwise indicated in new editions.

This edition replaces SC23-7287-00.

© Copyright IBM Corporation 2008, 2015.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures vii

Tables ix

About this information xi
Who should read this information xi
Conventions and terminology used in this
information xi
Prerequisite and related information xii

Parallel Tools Platform component xiii
How to send your comments xiii

Summary of changes xv

Limitations and restrictions xvii

Part 1. Introduction 1

Chapter 1. Introduction to the IBM HPC
Toolkit 3
The HPC Toolkit 3
Collecting performance data from a subset of parallel
application tasks 4
Performance measurement tools 4
Instrumentation models. 5
Setting the user environment 5

Part 2. Installation 9

Chapter 2. Supported platforms and
software levels 11

Chapter 3. Installation media contents 13

Chapter 4. Installing the IBM High
Performance Computing Toolkit 15
Installing the IBM HPC Toolkit on Linux systems . 15
Installing the IBM HPC Toolkit xCAT kit 16
Installing the IBM HPC Toolkit hpctView
application 17
Installing the IBM HPCT plug-in for Eclipse PTP .. 17

Part 3. Using the IBM PE Developer
Edition graphical performance
analysis tools 19

Chapter 5. Generating a log file 21

Chapter 6. Using the hpctView
application 23
Preparing an application for analysis 24
Working with the application 25
Opening the application executable 25
Using hpctView 26
Using Eclipse PTP 29
Instrumenting the application 29
Running the instrumented application 30
Viewing performance data 38

Chapter 7. Using hardware
performance counter profiling. 41
Preparing an application for profiling. 41
Instrumenting the application 41
Running the instrumented application 43
Viewing hardware performance counter data . .. 45

Chapter 8. Using GPU hardware
counter profiling 47
Preparing an application for profiling. 47
Instrumenting the application 47
Running the instrumented application 48
Viewing GPU hardware performance counter data 49
Displaying combined CPU and GPU performance
data 50

Chapter 9. Using MPI profiling 53
Preparing an application for profiling. 53
Instrumenting the application 53
Running the application 55
Viewing MPI profiling data 57
Viewing MPI traces. 58

Chapter 10. Using I/O profiling 61
Preparing an application for profiling. 61
Instrumenting the application 61
Running the application 63
Viewing I/O Data 64

Chapter 11. Using Call Graph analysis 67
Preparing the application 67
Running the application 67
Viewing profile data 67
Viewing the Call Graph 68
Viewing gprof data 69

Part 4. The hardware performance
counter tools 73

© Copyright IBM Corp. 2008, 2015 iii

||

||

||

||

|
||
||
||
||
||
|
||

Chapter 12. Using the hardware
performance counter tools 75
Using the hpccount command 75
Using the hpcstat command 76
Using the libhpc library 77
Understanding CPU hardware counter multiplexing 78
Understanding derived metrics 79
Understanding MFlop issues 79
Understanding inheritance 80
Understanding inclusive and exclusive event counts 80
Understanding parent-child relationships 81
Handling of overlap issues 81
Understanding measurement overhead 82
Handling multithreaded program instrumentation
issues 82
Considerations for MPI programs 83

General considerations 83
Hardware performance counter plug-ins. . .. 83

Chapter 13. Using GPU hardware
counters in HPCT 89

Part 5. The MPI and I/O profiling
libraries 93

Chapter 14. Using the MPI profiling
library 95
Compiling and linking with libmpitrace 95
Controlling traced tasks 96
Additional trace controls 96
Customizing MPI profiling data 97
Understanding MPI profiling utility functions . .. 98
Performance data file naming 98

Chapter 15. Using the I/O profiling
library 99
Preparing your application 99
Setting I/O profiling environment variables . .. 99
Specifying I/O profiling library module options 101
Running your application 104
Performance data file naming 104

Part 6. Using the hpctInst
command 105

Chapter 16. Instrumenting your
application using hpctInst 107
Instrumenting your application for hardware
performance counters 107
Instrumenting your application for MPI profiling 108
Instrumenting your application for I/O profiling 109

Part 7. Command and API
reference. 111

Chapter 17. Commands 113
gpmlist - Lists the available events and metrics .. 114
hpccount - Report hardware performance counter
statistics for an application 116
hpcrun - Launch a program to collect profiling or
trace data. 122
hpcstat - Reports a system-wide summary of
hardware performance counter statistics 124
hpctInst - Instrument applications to obtain
performance data 128

Chapter 18. Application programming
interfaces 131
gpm_init - Initialize the GPU Performance Monitor
runtime environment 133
gpm_start - Identify the starting point of an
instrumented region of code 136
gpm_stop - Identify the end point of an
instrumented region of code 139
gpm_terminate - Generate GPU Performance
Monitoring statistics and trace files and shut down
the GPM runtime environment 142
gpm_Tstart - Identify the starting point of an
instrumented region of code 145
gpm_Tstop - Identify the end point of an
instrumented region of code 148
hpm_error_count, f_hpm_error - Verify a call to a
libhpc function 151
hpmInit, f_hpminit - Initialize the Hardware
Performance Monitor (HPM) run-time environment 153
hpmStart, f_hpmstart - Identify the starting point
for an instrumented region of code 158
hpmStartx, f_hpmstartx - Identify the starting point
for an instrumented region of code 160
hpmStop, f_hpmstop - Identify the end point of an
instrumented region of code 163
hpmTerminate, f_hpmterminate - Generate HPM
statistic files and shut down HPM 165
hpmTstart, f_hpmtstart - Identify the starting point
for an instrumented region of code 167
hpmTstartx, f_hpmtstartx - Identify the starting
point for an instrumented region of code 169
hpmTstop, f_hpmtstop - Identify the end point of
an instrumented region of code 172
MT_get_allresults - Obtain statistical results . .. 174
MT_get_calleraddress - Obtain the address of the
caller of an MPI function 177
MT_get_callerinfo - Obtain source code information 178
MT_get_elapsed_time - Obtains elapsed time . .. 180
MT_get_environment - Returns run-time
environment information 181
MT_get_mpi_bytes - Obtain the accumulated
number of bytes transferred 182
MT_get_mpi_counts - Obtain the the number of
times a function was called. 183
MT_get_mpi_name - Returns the name of the
specified MPI function 184
MT_get_mpi_time - Obtain elapsed time 185
MT_get_time - Get the elapsed time 186

iv High Performance Computing Toolkit: Installation and Usage Guide

|
||

||

|
||
|
||
|
||
|
|
||
|
||
|
||

MT_get_tracebufferinfo - Obtain information about
MPI trace buffer usage 187
MT_output_text - Generate performance statistics 188
MT_output_trace - Control whether an MPI trace
file is created 189
MT_trace_event - Control whether an MPI trace
event is generated 190
MT_trace_start, mt_trace_start - Start or resume the
collection of trace events 192
MT_trace_stop, mt_trace_stop - Suspend the
collection of trace events 194

Part 8. Appendixes 195

Appendix A. Performance data file
naming 197
File naming conventions. 197
File naming examples 198

Appendix B. Derived metrics, events,
and groups supported on POWER8
architecture 203
Derived metrics defined for POWER8 architecture 203

Events and groups supported on POWER8
architecture 204

Appendix C. HPC Toolkit environment
variables 271

Accessibility features for IBM PE
Developer Edition 275
Accessibility features 275
Keyboard navigation 275
IBM and accessibility 275

Notices 277
Programming interface information 279
Trademarks 279
Terms and conditions for product documentation 279
IBM Online Privacy Statement. 280
Privacy policy considerations 281
Trademarks 281

Index 283

Contents v

vi High Performance Computing Toolkit: Installation and Usage Guide

Figures

1. hpctView Welcome page 24
2. hpctView main window 25
3. Remote file browser. 27
4. New connection dialog. 28
5. Initial instrumentation view 29
6. Expanded instrumentation view. 30
7. Profile Configurations dialog. 31
8. Resources tab 32
9. Application tab 33

10. Arguments tab 34
11. Environment tab 35
12. Performance Analysis tab 36
13. Performance Data view after loading

performance files. 38
14. Performance Data view showing application

data 39
15. Performance Data view in tabular mode 40
16. HPM instrumentation tab 42
17. HPM subtab containing hardware counter

settings 44

18. GPM subtab containing GPU metrics settings 48
19. Trace View displaying GPU performance data

from an MPI program 50
20. MPI instrumentation tab 54
21. Subtab containing MPI trace settings 56
22. Performance Data view with MPI profiling

data 57
23. MPI trace view 58
24. MIO instrumentation view 62
25. MIO subtab of the Performance Analysis tab 63
26. Performance Data view displaying the I/O

profiling data.. 64
27. MIO Data view showing I/O trace data 65
28. MIO Data view showing a graph of the trace

data 66
29. Call Graph view 68
30. The gmon view 70

© Copyright IBM Corp. 2008, 2015 vii

||
|
||

viii High Performance Computing Toolkit: Installation and Usage Guide

Tables

1. Conventions xi
2. Platform-specific file names for the IBM PE

Developer Edition HPC Toolkit 13
3. Linux software requirements for the IBM HPC

Toolkit 15
4. Platform specific Linux package file names for

the IBM HPC Toolkit 16
5. Profile Configurations dialog Common

environment variables 37
6. HPM profile configuration dialog environment

variables 44
7. GPM profile configuration dialog environment

variable 49
8. MPI trace profile configuration environment

variables 56
9. MPI trace timeline navigation 59

10. MIO profile configuration environment
variables 64

11. Plug-ins shipped with the tool kit 84
12. MPI profiling utility functions 98
13. MIO analysis modules 101
14. MIO module options 101
15. MIO pf module options 101
16. MIO trace module options 102
17. MIO recov module options 103
18. Commands 113
19. APIs 131
20. Controlling the collection of MPI trace events

for any function with an identifier 190
21. File naming conventions for various tools and

their types 197
22. Derived metrics defined for POWER8

architecture 203
23. HPC Toolkit environment variables 271

© Copyright IBM Corp. 2008, 2015 ix

|
||
|
||

|
||

x High Performance Computing Toolkit: Installation and Usage Guide

About this information

This information applies only to IBM® Parallel Environment (PE) Developer
Edition Version 2.2.

Attention:

IBM PE Developer Edition 2.2 only runs on IBM Power Systems™ servers with IBM
POWER8® technology in Little Endian (LE) mode running RHEL 7.2.

For information about running Power Systems servers with IBM POWER8 technology in
Little Endian (LE) mode running the Ubuntu Server 14.04.01 for IBM Power®, refer to IBM
PE Developer Edition 2.1 (http://www-01.ibm.com/support/knowledgecenter/
SSFK5S_2.1.0/pedev.v2r1_welcome.html?cp=SSFK5S_2.1.0%2F0-0) in IBM Knowledge
Center).

Disclaimer:

The functions or features found herein may not be available on all operating systems or
platforms and do not indicate the availability of these functions or features within the IBM
product or future versions of the IBM product. The development, release, and timing of
any future features or functionality is at IBM's sole discretion. IBM's plans, directions, and
intent are subject to change or withdrawal without notice at IBM's sole discretion. The
information mentioned is not a commitment, promise, or legal obligation to deliver any
material, code or functionality. The information may not be incorporated into any contract
and it should not be relied on in making a purchasing decision.

Who should read this information
This information is for parallel application developers looking to improve
productivity throughout the edit, compile, debug, and run development cycle. A
set of integrated performance analysis tools is provided to help the application
developer tune a serial or parallel application.

Conventions and terminology used in this information
Table 1 shows the conventions used in this information:

Table 1. Conventions

Convention Usage

bold Bold words or characters represent system elements that you must
use literally, such as commands, flags, path names, directories, file
names, values, and selected menu options.

bold underlined Bold underlined keywords are defaults. These take effect if you do
not specify a different keyword.

constant width Examples and information that the system displays appear in
constant-width typeface.

italic Italic words or characters represent variable values that you must
supply.

Italics are also used for information unit titles, for the first use of a
glossary term, and for general emphasis in text.

© Copyright IBM Corp. 2008, 2015 xi

|

|

|

|
|

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

http://www-01.ibm.com/support/knowledgecenter/SSFK5S_2.1.0/pedev.v2r1_welcome.html?cp=SSFK5S_2.1.0%2F0-0
http://www-01.ibm.com/support/knowledgecenter/SSFK5S_2.1.0/pedev.v2r1_welcome.html?cp=SSFK5S_2.1.0%2F0-0

Table 1. Conventions (continued)

Convention Usage

<key> Angle brackets (less-than and greater-than) enclose the name of a
key on the keyboard. For example, <Enter> refers to the key on
your terminal or workstation that is labeled with the word Enter.

\ In command examples, a backslash indicates that the command or
coding example continues on the next line. For example:

mkcondition -r IBM.FileSystem -e "PercentTotUsed > 90" \
-E "PercentTotUsed < 85" -m d "FileSystem space used"

{item} Braces enclose a list from which you must choose an item in format
and syntax descriptions.

[item] Brackets enclose optional items in format and syntax descriptions.

<Ctrl-x> The notation <Ctrl-x> indicates a control character sequence. For
example, <Ctrl-c> means that you hold down the control key while
pressing <c>.

item... Ellipses indicate that you can repeat the preceding item one or more
times.

| v In syntax statements, vertical lines separate a list of choices. In
other words, a vertical line means Or.

v In the margin of the document, vertical lines indicate technical
changes to the information.

Prerequisite and related information
IBM Parallel Environment Runtime Edition

The IBM Parallel Environment Runtime Edition library consists of:
v IBM Parallel Environment Runtime Edition: Installation, SC23-7282
v IBM Parallel Environment Runtime Edition: Messages, SC23-7284
v IBM Parallel Environment Runtime Edition: MPI Programming Guide, SC23-7285
v IBM Parallel Environment Runtime Edition: NRT API Programming Guide,

SC23-7286
v IBM Parallel Environment Runtime Edition: Operation and Use, SC23-7283
v IBM Parallel Environment Runtime Edition: PAMI Programming Guide, SA23-1453

To access the most recent IBM PE Runtime Edition or IBM PE Developer Edition
documentation in PDF and HTML format, refer to the IBM Knowledge Center
(www.ibm.com/support/knowledgecenter), on the web.

The current IBM PE Runtime Edition or IBM PE Developer Edition documentation
is also available in PDF format from the IBM Publications Center
(www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss).

To easily locate a book in the IBM Publications Center, supply the book's
publication number. The publication number for each of the Parallel Environment
books is listed after the book title in the preceding lists.

xii High Performance Computing Toolkit: Installation and Usage Guide

http://www.ibm.com/support/knowledgecenter/
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss

Parallel Tools Platform component

For information about how to use the Eclipse client Parallel Tools Platform (PTP)
component, go to Eclipse Documentation (http://help.eclipse.org/mars/index.jsp)
and search for these documents:
v Parallel Development User Guide

v PTP Developer's Guide

These documents are available both on the web and as online Help that can be
accessed through the Eclipse user interface.

How to send your comments
Your feedback is important in helping us to produce accurate, high-quality
information. If you have any comments about this information unit, send your
comments by e-mail to:

mhvrcfs@us.ibm.com

Include the book title and order number, and, if applicable, the specific location of
the information you have comments on (for example, a page number or a table
number).

You can also add comments to individual topics in IBM Knowledge Center
(www.ibm.com/support/knowledgecenter) by clicking Add Comment and filling
in the form.

For technical information and to exchange ideas related to high performance
computing, go to:
v developerWorks® HPC Central (www.ibm.com/developerworks/wikis/display/

hpccentral/HPC+Central)
v developerWorks Forum (www.ibm.com/developerworks/forums)

About this information xiii

|
|
|

|

|

|
|

|
|
|

http://help.eclipse.org/mars/index.jsp
http://www.ibm.com/support/knowledgecenter/
http://www.ibm.com/developerworks/wikis/display/hpccentral/HPC+Central
http://www.ibm.com/developerworks/forums/

xiv High Performance Computing Toolkit: Installation and Usage Guide

Summary of changes

The following summarizes changes to the IBM Parallel Environment (PE)
Developer Edition Version 2 Release 2 product and library.

Within each information unit in the library, a vertical line in the margin next to text
and illustrations indicates technical changes or additions made to the previous
edition of the information.

Attention:

IBM PE Developer Edition 2.2 only runs on IBM Power Systems servers with IBM
POWER8 technology in Little Endian (LE) mode running RHEL 7.2.

For information about running Power Systems servers with IBM POWER8 technology in
Little Endian (LE) mode running the Ubuntu Server 14.04.01 for IBM Power, refer to IBM
PE Developer Edition 2.1 (http://www-01.ibm.com/support/knowledgecenter/
SSFK5S_2.1.0/pedev.v2r1_welcome.html?cp=SSFK5S_2.1.0%2F0-0) in IBM Knowledge
Center).

Disclaimer:

The functions or features found herein may not be available on all operating systems or
platforms and do not indicate the availability of these functions or features within the IBM
product or future versions of the IBM product. The development, release, and timing of
any future features or functionality is at IBM's sole discretion. IBM's plans, directions, and
intent are subject to change or withdrawal without notice at IBM's sole discretion. The
information mentioned is not a commitment, promise, or legal obligation to deliver any
material, code or functionality. The information may not be incorporated into any contract
and it should not be relied on in making a purchasing decision.

New information
v Support for graphics processing unit (GPU) hardware counters in the High

Performance Computing Toolkit (HPCT) has been added, which includes:
– A new command called gpmlist, which lists the events and metrics that are

available for a specific GPU device or the current GPU device.
– New environment variables:

- GPM_EVENT_SET, which specifies the set of events to profile in a single
run

- GPM_METRIC_SET, which specifies the set of metrics to profile in a single
run

- HPM_ENABLE_GPM, which instructs the HPM module to drive GPU
event and metric profiling

v Support for loading and visualizing OTF2 files generated using HPCT.
v Support for GPU hardware counters in the hpctView application, which changes

the visualization of the profile and trace files produced by the HPC Toolkit.

Deleted information

All references to the IBM PE Developer Edition Workbench have been removed
because it is not supported in this release.

© Copyright IBM Corp. 2008, 2015 xv

|

|

|
|

|
|
|
|
|

|

|
|
|
|
|
|
|
|
|

http://www-01.ibm.com/support/knowledgecenter/SSFK5S_2.1.0/pedev.v2r1_welcome.html?cp=SSFK5S_2.1.0%2F0-0
http://www-01.ibm.com/support/knowledgecenter/SSFK5S_2.1.0/pedev.v2r1_welcome.html?cp=SSFK5S_2.1.0%2F0-0

xvi High Performance Computing Toolkit: Installation and Usage Guide

Limitations and restrictions

The following limitations and restrictions apply:
v On Power Architecture®, the dynamic instrumentation tools (hpctInst) will only

operate reliably on executables with a text segment size less than 32 MB.
v Using the hpcrun command to launch an MPI program compiled with -hpcprof

is not supported on Linux.
v Instrumentation of executables compiled and linked with the -pg flag using the

IBM Eclipse HPC Toolkit plug-in or hpctInst is not supported.
v Using the hpcrun command to launch applications that use dynamic tasking is

not supported.
v On Linux running on Power Architecture, instrumenting programs with MPI

and HPM at the same time is not supported.
v The only --tracestore option that is valid for the hpcrun command when

collecting I/O trace is memory. Although the --tracestore option accepts file
names for both MPI and I/O tracing, I/O tracing should not be used unless the
memory option was chosen.

v HPC Toolkit using the hpcrun command, which is intended to filter the volume
of data collected for large numbers of application tasks, has been tested to 3500
application tasks. When collecting MPI profiling and trace data you might notice
performance degradation as the task count increases.

© Copyright IBM Corp. 2008, 2015 xvii

xviii High Performance Computing Toolkit: Installation and Usage Guide

Part 1. Introduction

The topics in this part provide an introduction to the IBM High Performance
Computing Toolkit.

© Copyright IBM Corp. 2008, 2015 1

2 High Performance Computing Toolkit: Installation and Usage Guide

Chapter 1. Introduction to the IBM HPC Toolkit

The HPC Toolkit is an integrated set of performance analysis tools that help the
application developer tune a serial or parallel application. The HPC Toolkit is a
component of IBM Parallel Environment Developer Edition. IBM Parallel
Environment Developer Edition also provides a plug-in for the Eclipse-based
integrated development environment (IDE) that enables HPC Toolkit to be used to
improve parallel application developer productivity throughout the edit, compile,
debug, and run development cycle for C, C++ and Fortran applications.

The IBM PE Developer Edition is a companion to IBM PE Runtime Edition.

The HPC Toolkit
The HPC Toolkit is the server (back-end) component that provides the performance
analysis tools. These tools perform the following functions:
v Provide access to hardware performance counters for performing low-level

analysis of an application, including analyzing cache usage and floating-point
performance

v Profile and trace an MPI application for analyzing MPI communication patterns
and performance problems

v Profile an OpenMP application for analyzing OpenMP performance problems
and to help you determine if an OpenMP application properly structures its
processing for best performance

v Profile application I/O for analyzing an application’s I/O patterns and whether
you can improve the application’s I/O performance

v Profile an application’s execution for identifying hotspots in the application, and
for locating relationships between functions in your application to help you
better understand the application’s performance

The HPC Toolkit provides three types of interfaces:
v An application programming interface (API) and shared libraries intended to be

used by users to insert performance analysis calls into their applications
v A command line interface (CLI) intended to be used on the login nodes to

instrument the user application (hpctInst)
v A graphical user interface (GUI) intended to be used on a client machine

(desktop or laptop) to instrument and run the user application, and visualize the
trace files produced by back-end instrumentation components (hpctView and the
HPCT plug-in for Eclipse PTP)

The HPC Toolkit interfaces allow users to do the following:
v Collect performance data from an instrumented application by setting

environment variables for the specific analysis tool and then invoking the
application from the command line.

v Modify the application to add calls to the hardware performance counter tool,
rebuild your application linking with the hardware performance counter library,
and then run the application to get hardware performance counter data.

v Link the application directly with the MPI profiling and trace library then run
the application to get MPI trace and profiling data.

© Copyright IBM Corp. 2008, 2015 3

|
|
|
|
|
|
|

|
|
|
|

v Link the application with the I/O profiling and trace library to get I/O profiling
and trace information.

Collecting performance data from a subset of parallel application tasks

By default, the IBM HPC Toolkit generates and collects performance data for all
tasks in the application. If the application has a large number of tasks, the
overhead of collecting performance data from all application tasks may be
excessive.

The IBM HPC Toolkit provides a command, hpcrun, that you can use to collect
performance data from a subset of application tasks. The hpcrun command allows
you to specify a number of application tasks to collect performance data from and
the performance metric to use in determining which tasks to collect performance
data from.

The hpcrun command will collect performance data from the number of
application tasks you specify that have the minimum value for the performance
metric you specify, the number of application tasks you specify that have the
maximum value for the performance metric you specify, the task closest to the
average for the metric you selected and application task zero.

You can collect performance data by specifying a metric of ELAPSED_TIME to use
elapsed wall clock time as the performance metric, or by specifying a metric of
CPU_TIME to use CPU time as the performance metric.

If you are collecting MPI trace or I/O trace data, you can either collect trace data
in memory in each application task or store it to temporary files. If the size of the
individual trace files is small, then you should use the in-memory model for better
performance. Otherwise, use the temporary file model for trace file generation.

See “hpcrun - Launch a program to collect profiling or trace data” on page 122 for
details of specific command line flags and environment variables.

Performance measurement tools

The following tools are provided to help you obtain performance measurements:
v Hardware performance counters, including:

– Measurements for cache misses at all levels of cache
– The number of floating point instructions executed
– The number of load instructions resulting in TLB misses
– Other measurements that are supported by your hardware

These measurements help the algorithm designer or developer identify and
eliminate performance bottlenecks. The hardware performance counter tools
allow you to run individual tasks of an MPI application with different groups of
hardware counters monitored in each MPI task, so that you can obtain
measurements for more than one hardware counter group within a single
execution.
These tools also allow you to summarize or aggregate hardware performance
counter measurements from a set of MPI tasks, using plug-ins provided with the
IBM HPC Toolkit or provided by you.

4 High Performance Computing Toolkit: Installation and Usage Guide

v MPI profiling and trace, where MPI profiling obtains performance metrics
including time spent in each MPI function call and MPI trace creates a trace of
MPI function calls in your application so you can view MPI communication
patterns in your application.

v OpenMP profiling, where you can obtain information about time spent in
OpenMP constructs in your program, information about overhead in OpenMP
constructs, and information about how workload is balanced across OpenMP
threads in your application.

v Application I/O profiling, where you can obtain information about I/O calls
made in your application to help you understand application I/O performance
and identify possible I/O performance problems in your application.

v Application profiling, where you can identify functions in your application
where the most time is being spent, or where the amount of time spent is
different from your expectations. This information is presented in a graphical
display that helps you better understand the relationships between functions in
your application.

Instrumentation models

The IBM HPC Toolkit provides two instrumentation models:
v A model in which the application executable is rewritten with the

instrumentation specified by the user. The user specifies the instrumentation
using the Eclipse plug-in, the hpctView application, or the hpctInst command.
The IBM HPC Toolkit rewrites the application executable, adding the requested
calls to the instrumentation libraries into the executable. This process does not
require any modifications to the application source code, and does not require
the application to be relinked.

v A model in which measurements are obtained by using the Hardware
Performance Monitor (HPM) or by controlling the generation of the MPI trace
and MPI profiling information when using MPI profiling. In this model, users
modify their application by inserting calls to functions in the instrumentation
library in the application source code, then recompiling and relinking the
application.

When you instrument an application, you should choose only one of the
instrumentation models. This is because any calls to instrumentation functions that
you code into the application might interfere with the instrumentation calls that
are inserted by the HPC Toolkit when using the Eclipse plug-in, the hpctView
application, or the hpctInst command.

For more information about the hpctInst utility, see Chapter 16, “Instrumenting
your application using hpctInst,” on page 107.

For more information about the hpctView application, see Chapter 6, “Using the
hpctView application,” on page 23.

Setting the user environment
Before using the IBM HPC Toolkit, You must ensure that several environment
variables required by the IBM HPC Toolkit are properly set. In order to set these
environment variables, you must run one of the setup scripts that are located in
the top-level directory of the IBM HPC Toolkit installation.

Chapter 1. Introduction to the IBM HPC Toolkit 5

To initialize the IBM HPC Toolkit environment, issue the following command as
the shell prompt:
. /opt/ibmhpc/ppedev.hpct/env_sh

Users using csh issue the following command at the shell prompt:
source /opt/ibmhpc/ppedev.hpct/env_csh

When using the Eclipse plug-in or the hpctView application, you do not need to
set the environment directly. Instead, you set the IBM HPC Toolkit environment
using the dialogs available in the hpctView application as described in Part 3,
“Using the IBM PE Developer Edition graphical performance analysis tools,” on
page 19.

The IBM HPC Toolkit requires the user application to be compiled and linked
using the -g flag. For Power Linux systems, the user application must be linked
with the -Wl,--hash-style=sysv -emit-stub-syms flags . If the user application has
not been compiled and linked using these flags, the Eclipse plug-in, the hpctView
application, and the hpctInst command will not be able to instrument the
application.

After instrumenting it, users must ensure that the application, and any data files
that it requires, are properly distributed on the system where it will run. If the
application resides in a globally accessible file system, such as an IBM Spectrum
Scale™ file system, you should not have to do anything to distribute the
application. If your system is set up so that only local file systems are used, you
must manually copy the application and any data files it requires to each node on
which the application will run, using system utilities that are most appropriate for
your system.

You also need to make sure that the application environment has been properly set
up. This includes making sure that any environment variables that are required to
control the instrumentation in your application are properly set.

After you have set up the application environment, you can invoke the application
as you would normally. The performance measurements you requested will be
obtained while the application runs, and the results will be written when the
application completes.

By default, the performance measurement data is written to the current working
directory for the application. Before you can view the performance data, you must
ensure that all the performance data files are accessible to the node on which you
will run the visualization tools. If the current working directory for the application
resides in a global file system, you should not need to do anything to make the
performance data files accessible to the visualization tools. If the current working
directory resides in local file systems on each node on which the application ran,
you need to collect all the performance data files that you want to view in to a
single directory that is accessible to the visualization tools. You can use any system
utilities appropriate for your system to move the performance data files to a
directory that is accessible to the visualization tools.

The topics that follow describe how to:
v Install the IBM HPC Toolkit
v Use the GUI tools to instrument, run, and analyze the performance of an

application

6 High Performance Computing Toolkit: Installation and Usage Guide

|
|
|
|
|

|
|

v Instrument your application by inserting calls to the instrumentation libraries in
your application

v Use the command line instrumentation tools

Chapter 1. Introduction to the IBM HPC Toolkit 7

8 High Performance Computing Toolkit: Installation and Usage Guide

Part 2. Installation

The topics in this part provide information about installing the IBM High
Performance Computing Toolkit.

© Copyright IBM Corp. 2008, 2015 9

10 High Performance Computing Toolkit: Installation and Usage Guide

Chapter 2. Supported platforms and software levels

The IBM PE Developer Edition is supported on the following software levels:
v The IBM HPC Toolkit back-end (the run-time and the CLI instrumentation tools)

is supported on IBM Power Systems servers with IBM POWER8 technology in
Little Endian (LE) mode running RHEL 7.2.

v The IBM HPC Toolkit hpctView application is supported on the following
platforms:
– Microsoft Windows 64 bit
– Mac OS X 10.9 (Mavericks) or later
– x86_64 Linux

Additional requirements

The following additional requirements are necessary to enable certain features in
IBM PE Developer Edition:
v Java™ Runtime version 1.8 or higher is required for the hpctView application. Go

to Java (www.java.com) for more information.
v On MacOS, Java JDK 1.8 or higher is required for the hpctView application. Go

to Java (www.java.com) for more information.
v The Time/HiRes Perl module must be installed on any login node where jobs

will be submitted using IBM PE Developer Edition. The Time/HiRes Perl
module can be obtained from CPAN (search.cpan.org/search?query=time-hires
&mode=all).

IBM PE Developer Edition supports the following:
v IBM Parallel Runtime Edition 2.3.0.0 or later
v IBM Platform LSF® 9.1.1 or later

© Copyright IBM Corp. 2008, 2015 11

|
|
|

|
|

|

|

|

|
|

|
|

|

http://java.com/en/
http://java.com/en/
http://search.cpan.org/search?query=time-hires&mode=all

12 High Performance Computing Toolkit: Installation and Usage Guide

Chapter 3. Installation media contents

The IBM PE Developer Edition provides an installation medium for the IBM HPC
Toolkit.

IBM PE Developer Edition HPC Toolkit

The IBM PE Developer Edition HPC Toolkit contains install images for the CLI
instrumentation commands and runtime and the install image archives for the
hcptView command.

The install images for all supported platforms are provided on a single DVD (see
Table 2). The CLI instrumentation commands and runtime are located in the hpct
directory, while the install image archives for the hpctView commands are located
in the hpctview directory, as follows:
hpct

hpct/ppedev-hpct-2.2.0-0.ppc64el.rpm
hpct/ppedev-license-2.2.0-0.ppc64el.rpm
hpct/ppedev-runtime-2.2.0-0.ppc64el.rpm
hpct/ppedev-2.2.0-0.tar.bz2

hpctview

hpctview/hpctView-2.2.0-0-linux-gtk-x86_64.tar.gz
hpctview/hpctView-2.2.0-0-macosx-cocoa-x86_64.tar.gz
hpctview/hpctView-2.2.0-0-win64.zip

HPCT plugin for Eclipse PTP

eclipse/ppedev_update-2.2.0-0.zip

Table 2. Platform-specific file names for the IBM PE Developer Edition HPC Toolkit

Purpose Platform/where installed

HPCT and hpctView application IBM HPC Toolkit for IBM Power Systems servers with IBM POWER8 technology in LE
mode running RHEL 7.2, installed on the compute and login nodes:

v ppedev-hpct-2.2.0-0.ppc64el.rpm

v ppedev-license-2.2.0-0.ppc64el.rpm

v ppedev-runtime-2.2.0-0.ppc64el.rpm

IBM HPC Toolkit xCAT kit for IBM Power Systems servers with IBM POWER8
technology in LE mode running RHEL 7.2:

v ppedev-2.2.0-0.tar.bz2

The following is installed on the user's client machine (desktop or laptop):

The hpctView application for Microsoft Windows 64 bit:

v hpctView-2.2.0-0-win64.zip

The hpctView application for Mac OS X 64 bit:

v hpctView-2.2.0-0-macosx-cocoa-x86_64.tar.gz

The hpctView application for x86_64 Linux:

v hpctView-2.2.0-0-linux-gtk-x86_64.tar.gz

The HPCT plugin for PTP, for Windows 64 bit, Mac OS X 64bit and x86_64 Linux:

v ppedev_update-2.2.0-0.zip

© Copyright IBM Corp. 2008, 2015 13

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|
|
|

|
|
|

|
|

|
|

|
|

|
|

The IBM PE Developer Edition HPC Toolkit packaging consists of the following:
v A copy of the IBM PE Developer Edition HPC Toolkit (installation images) for

IBM Power Systems servers with IBM POWER8 technology in LE mode running
RHEL 7.2

v A copy of the IBM PE Developer Edition HPC Toolkit xCAT kit package
v Copies of the hpctView application install image archives for the supported

platforms
v A copy of the IBM PE Developer Edition HPCT plugin for Eclipse PTP

14 High Performance Computing Toolkit: Installation and Usage Guide

|
|
|

|

Chapter 4. Installing the IBM High Performance Computing
Toolkit

The installation of the IBM PE Developer Edition HPC Toolkit consists of:
1. Installing the runtime and the CLI instrumentation tools on the Linux system

(compute and login nodes)
2. Installing the hpctView application on the user's client machine (desktop or

laptop)

Installing the IBM HPC Toolkit on Linux systems
The IBM High Performance Computing Toolkit can be installed on IBM Power
Systems servers, which are supported by IBM Parallel Environment (PE) Runtime
Edition for Linux.

Table 3 shows the IBM HPC Toolkit software requirements:

Table 3. Linux software requirements for the IBM HPC Toolkit

Function Software

IBM Power Systems servers with
POWER8 technology in LE mode
running RHEL 7.2

All Operating system IBM Power Systems servers with
POWER8 technology in LE mode
running RHEL 7.2

Compiling C applications C compiler IBM xlC 13.1.1 or later

Compile and run MPI or PAMI
programs

Parallel Environment Runtime
Edition

2.3.0 or later

Compiling Fortran applications Fortran Compiler IBM XL Fortran 15.1.1 or later

The installation images for the IBM HPC Toolkit use the ppedev prefix. The
following install packages are available for the backend:

Package Description

ppedev-license-2.2.0-0.arch.rpm Provides the IBM PE Developer Edition
license agreement and license acceptance
script

ppedev-runtime-2.2.0-0.arch.rpm Provides the runtime instrumentation
functionality

ppedev-runtime-2.2.0-0.arch.dev Provides the CLI instrumentation tools

In addition the IBM HPC Toolkit provides the hpctView-2.2.0-0 archives for the
supported platforms that provides the hpctView application. It also provides the
ppedev_update-2.2.0-0.zip update site image for installation into existing Eclipse
PTP installations.

You must install and accept the IBM PE Developer Edition license on each node
where you intend to install the IBM HPC Toolkit installation images before you
can install the IBM HPC Toolkit.

© Copyright IBM Corp. 2008, 2015 15

|

|
|
|

|

||

||

|
|
|

|||
|
|

|||

|
|
|
|
|

|||
|

|
|

|||

||
|
|

||
|

||
|

|
|
|
|

|
|
|

To install the license:
1. Create a directory, for example:

~/images

2. Copy the following to that directory:
ppedev_license-2.2.0-0.ppc64le.rpm

3. Change the directory (cd) to that directory.
4. As root, invoke the command:

rpm -i ppedev-license-2.2.0-0.ppe64le.rpm

Note: If root privileges are not available, you can use the sudo command, as
follows:
sudo rpm -i ppedev-license-2.2.0-0.ppc64le.rpm

5. Set the IBM_PPEDEV_LICENSE_ACCEPT environment variable to no, for
example, export:
IBM_PPEDEV_LICENSE_ACCEPT=no

6. Invoke the following command to accept the license for installation images:
/opt/ibmhpc/ppedev.hpct/lap/accept_ppedev_license.sh

7. Accept the license once you have reviewed the license terms.
8. If you have already reviewed the IBM PE Developer Edition license, you can

set:
IBM_PPEDEV_LICENSE_ACCEPT=yes

before invoking:
/opt/ibmhpc/ppedev.hpct/lap/accept_ppedev_license.sh

in order to accept the license without reviewing it again.

Table 4 shows where to install the software packages provided by IBM PE
Developer Edition HPC Toolkit.

Table 4. Platform specific Linux package file names for the IBM HPC Toolkit

Purpose Where installed
Ubuntu Server 14.04.01 Linux distribution on POWER8
servers in Little Endian (LE) mode

IBM PE Developer Edition license login and compute
nodes

ppedev-license-2.2.0-0.ppc64le.rpm

IBM HPC Toolkit run-time support login and compute
nodes

ppedev-runtime-2.2.0-0.ppc64le.rpm

IBM HPC Toolkit CLI instrumentation tools login node ppedev-hpct-2.2.0-0.ppc64le.rpm

IBM HPC Toolkit hpctView application client machine
(desktop or laptop)

hpctView-2.2.0-0-win64.zip
hpctView-2.2.0-0-macosx-cocoa-x86_64.tar.gz
hpctView-2.2.0-0-linux-gtk-x86_64.tar.gz

IBM HPCT plug-in for Eclipse PTP client machine
(desktop or laptop)

ppedev_update-2.2.0-0.zip

Installing the IBM HPC Toolkit xCAT kit

The IBM PE Developer Edition HPC Toolkit xCAT kit package is shipped with the
distribution media The system administrator must use the xCAT commands to
install these kit packages on the boot image. For more information, see xCAT
Commands (http://xcat.sourceforge.net/man1/xcat.1.html#xcat_commands).

16 High Performance Computing Toolkit: Installation and Usage Guide

|

|

|

|

|

|

|

|

|
|

|

|
|

|

|

|

|

|
|

|

|

|

|

|
|

||

||
|
|

||
|
|

||
|
|

|||

||
|
|
|
|

||
|
|

|

|

http://xcat.sourceforge.net/man1/xcat.1.html#xcat_commands
http://xcat.sourceforge.net/man1/xcat.1.html#xcat_commands

Installing the IBM HPC Toolkit hpctView application

The installation of the hpctView application package must be done on the user's
client machine running one of the supported platforms:
v Microsoft Windows, 64 bit
v Mac OS X
v x86_64 Linux

In order to install the hpctView application, you must simply extract the program
files from the archive provided using the corresponding tool for your platform.

For example, for Microsoft Windows, do the following:
1. Copy the file from the installation media to your client machine.
2. Right-click on the name of the file and select the Extract all choice for the menu

that pops up.
3. Follow the presented dialogs to extract all the files in the directory of choice.

On x86_64 Linux, you can use the tar command to extract the files from the install
image archive, as follows:
tar -xf hpctView-2.2.0-0-linux-gtk-x86_64.tar.gz

to extract the archived files (you can use other options for the tar command to
extract in specific directory, and so on).

On Mac OS X, you can simply extract the files from the archive by double-clicking
on its icon. The Archive Utility message window pops up and will extract the
hpctView application in the same directory. You can then move the application to
the Application folder in your Finder.

Note: Regardless of the platform of choice, the installation of the hpctView
application does not require root or administrative privileges.

Installing the IBM HPCT plug-in for Eclipse PTP

The installation of the hpctView application package must be done on your client
machine that is running one of the supported platforms:
v Microsoft Windows, 64 bit
v Mac OS X
v x86_64 Linux

Before you begin, you must have write access to the directory where your copy of
Eclipse PTP is installed.

To install the hpctView application, follow these steps:
1. Copy the ppedev_update-2.2.0-0.zip update site image to your local machine.
2. Start your copy of Eclipse PTP.
3. Click Help in the Eclipse main menu and then click Install New Software in

the menu that is displayed.
4. Click the Add button in the upper right corner of the Install dialog.
5. Enter a name in the Name field of the Add Repository dialog, such as

hpctView Plugins.

Chapter 4. Installing the IBM High Performance Computing Toolkit 17

|

|

|

|

|
|

|

|

|

|
|

|

|

|

|
|

|

|
|

6. Click the Archive button in the Add Repository dialog. A file selector dialog
is displayed. Use that dialog to locate and select the ppedev_update-2.0.0-
0.zip file.

7. Click OK in the Add Repository dialog.
8. Make sure the entry you just created is displayed in the Work With combo

box at the top of the Install dialog. Entries for the IBM High Performance
Computing Toolkit and related software will be displayed in the name box in
the Install dialog.

9. Click the Select All button at the left center of the Install dialog.
10. Click the Next button in the Install dialog. A list of software to be installed

will be displayed.
11. Verify the list of software, and if it is correct, click the Next button in the

Install dialog. License information will be displayed.
12. Review the license information. If the license terms are acceptable, click the I

accept the terms of the license agreement button then click the Next button.
A Security Warning dialog is displayed, warning you that you are installing
unsigned content.

13. Click OK in this dialog to continue the installation. A Software Updates
dialog is displayed, prompting you to restart Eclipse.

14. Click Yes to restart Eclipse.
15. If this is the first time you have installed the ppedev_update-2.2.0-0.zip file in

your copy of Eclipse PTP, the terms of the license agreement will be
displayed.

16. Accept the terms of the license agreement in order to continue.

18 High Performance Computing Toolkit: Installation and Usage Guide

|
|
|

|

|
|
|
|

|

|
|

|
|

|
|
|
|

|
|

|

|
|
|

|

Part 3. Using the IBM PE Developer Edition graphical
performance analysis tools

The topics in this part provide information about using the IBM PE Developer
Edition graphical performance analysis tools for collecting, analyzing and
visualizing profile and trace data collected from high performance computing
applications.

The IBM PE Developer Edition provides the hpctView application, which is a
stand-alone tool that allows developers to instrument, run, collect and analyze data
from an existing application. For more information, see Chapter 6, “Using the
hpctView application,” on page 23.

© Copyright IBM Corp. 2008, 2015 19

|
|
|
|

20 High Performance Computing Toolkit: Installation and Usage Guide

Chapter 5. Generating a log file

All components of the IBM HPC Toolkit support log files that record execution
results. From binary instrumentation to runtime execution, the IBM HPC Toolkit
allows you to specify the required level of logging and the location of the log files.

The HPCTLOG and HPC_TEMPDIR environment variables are used to control
the IBM HPC Toolkit execution:
v The HPCTLOG environment variable sets the required level of logging.

HPC_TEMPDIR sets the directory where the log files are generated. By default,
the log files are generated in the /temp directory.

v The HPCTLOG environment variable has the following values:

Value Description

1 Logs errors.

2 Logs warnings.

3 Logs information.

4 Logs function entry and exit.

5 Logs debug information.

The levels of logging are cumulative, so if you set the logging level to 4, HPCT
will also log categories with a lower value (in this case, categories 1, 2, and 3).

The names of the log files have the following format:
<user name>.<component name><process id>.log

where:

user name
Is the name of the user.

component name
Is the name of the component generating the log, for example:

hpm For the Hardware Performance Monitor (HPM) component.

gpm For the GPU Performance Monitoring (GPM) component.

hpctInst
For the hpctInst command.

process id
Is the ID of the process (pid).

Remember: Log files are an important tool to use to determine the cause of
unexpected runtime results. However, enabling logging will result in performance
degradation because each process produces its own log file. For this reason, it is
not recommended for use with large scale jobs.

© Copyright IBM Corp. 2008, 2015 21

|

|

|
|
|

|
|

|
|
|

|

||

||

||

||

||

||

|
|

|

|

|

|
|

|
|

||

||

|
|

|
|

|
|
|
|

22 High Performance Computing Toolkit: Installation and Usage Guide

Chapter 6. Using the hpctView application

The hpctView application is part of the IBM Parallel Environment Developer
Edition and is the main user interface for the IBM HPC Toolkit performance tools.
You can use hpctView to profile your application and obtain performance
measurements in the following areas:
v Hardware performance counter measurements (see Chapter 7, “Using hardware

performance counter profiling,” on page 41)
v GPU hardware counters (see Chapter 8, “Using GPU hardware counter

profiling,” on page 47)
v MPI profiling (see Chapter 9, “Using MPI profiling,” on page 53)
v Application I/O profiling (see Chapter 10, “Using I/O profiling,” on page 61)

To profile your application and obtain performance measurements, you use the
hpctView application to open the existing executable, then specify the points at
which you want to gather profiling or trace information. Once these points have
been selected, hpctView will generate a new, instrumented, executable that can
then be run to generate the profile or trace data. After execution finishes, hpctView
will automatically load the performance data and allow you to visualize and
analyze the results. hpctView is also able to load and display the gprof data
(including call graph and histogram information) that is generated by compiling
with the -pg option.

When you first launch hpctView, you will see the Welcome page shown in Figure 1
on page 24. Follow the links to obtain more information and explore the product
features. When you are ready to begin using hpctView, click on the hpctView tab.

© Copyright IBM Corp. 2008, 2015 23

|
|

Preparing an application for analysis

You must compile and link your application using the -g compiler flag so that
hpctView has the line number and symbol table information that it needs in order
to show you the instrumentation points in your application, and so that the
application can be instrumented.

Note: You must not compile your application with the -pg flag.

When you compile an application on a Power Linux system, you will need to use
the following flags on the link step when compiling the application:
-Wl,--hash-style=sysv -Wl,--emit-stub-syms

When you try to load a FORTRAN Linux 64-bit application, the plug-in might be
unable to locate the main entry point for your application. If the plug-in cannot
locate the main entry point, it will issue a message suggesting that you set the
PSIGMA_MAIN environment variable. If you see this message, you should set
PSIGMA_MAIN to the main entry point of your application, or the name of the

Figure 1. hpctView Welcome page

24 High Performance Computing Toolkit: Installation and Usage Guide

main program of your FORTRAN application. Set the PSIGMA_MAIN
environment variable, using the method suitable for your operating system, prior
to launching the hpctView application.

Working with the application

When you start hpctView, the main window will look similar to Figure 2. On the
left side of the window is the Instrumentation view. This is where you will select
the instrumentation points used to gather performance data. In the middle is the
Performance Data view where the results of profiling or tracing your application
will be displayed. Other views may also become visible here as you use the
features of hpctView. At the bottom is the Console view where output from your
application runs will be displayed.

Opening the application executable

In order to start using hpctView, the application executable must be opened. Before
it can be opened, however, the executable must have been compiled as described
in “Preparing an application for analysis” on page 24.

Figure 2. hpctView main window

Chapter 6. Using the hpctView application 25

Using hpctView

Open the main File menu, then select Open Executable.... This will display the
remote file browser, as shown in Figure 3 on page 27.

The remote file browser will be used many times when working with applications
that are located on a remote machine. Begin by clicking on the New... button to
create a new connection. This will open a second dialog allowing the user to
supply connection information (see Figure 4 on page 28). At a minimum,
Connection name, Host, and User fields must be filled in. The Connection name
field provides a memorable name that will be displayed in the connection name
drop-down list next time the remote file browser is used. The Host field provides
the hostname for the target system. The User field provides the username that will
be used to log into the target system.

26 High Performance Computing Toolkit: Installation and Usage Guide

Figure 3. Remote file browser

Chapter 6. Using the hpctView application 27

If the connection is using a password for authentication, the Password field should
be completed. This is not required if the user has already set up an ssh public key
on the remote machine. For more information, see the ssh(1) man page
(linux.die.net/man/1/ssh). If the user has not set an ssh public key, but wants to
use a public key only for this connection, the Public key based authentication
radio button should be selected and the file containing the user's private key
entered into the File with private key field. The Browse... button can be used to
locate the file using a file browser. If the private key is protected with a
passphrase, then it will also need to be entered in the Passphrase field.

Once a new connection has been created, the remote file browser will populate
with the files and directories in the user's home directory on the target system. The
user can then navigate to the location of the application executable, select it, then
press the OK button.

At this point the application executable will be opened, and hpctView will read
and analyze the program. When completed, the Instrumentation view will
populate with the available instrumentation points. Figure 5 on page 29 shows the
Instrumentation view after opening a typical application executable.

Figure 4. New connection dialog

28 High Performance Computing Toolkit: Installation and Usage Guide

http://linux.die.net/man/1/ssh

Using Eclipse PTP

To use Eclipse PTP, follow these steps:
1. Locate the executable in the Project Explorer view.
2. Right click over the executable name.
3. Move the mouse over the HPCT entry in the pop-up menu that is displayed.
4. Click the Open Executable menu entry that is displayed.

At this point the application executable is opened and hpctView will read and
analyze the program. When completed, the Instrumentation view will populate
with the available instrumentation points as shown in Figure 5.

Instrumenting the application

When an application is ready to be instrumented, the HPM, MPI, OpenMP, and
MIO tabs in the Instrumentation view are updated with a tree showing the
possible instrumentation points for each type of instrumentation. Nodes in the
trees in each of these tabs can be expanded and collapsed by clicking the expand
icons. All nodes in the tree can be expanded or collapsed by clicking on the + or -
buttons, respectively, as well as by selecting the Expand All or Collapse All menus
from the view's pop-up menu.

Figure 5. Initial instrumentation view

Chapter 6. Using the hpctView application 29

|

|

|

|

|

|

|
|
|

The source code for the instrumentation point can be viewed by double clicking on
the instrumentation point in the view. This will open a source window with the
appropriate region of code highlighted. The main window can be resized to
provide more space for viewing the source code. Figure 6 shows the expanded
instrumentation view with a number of points selected. It also shows the source
code for the highlighted instrumentation point.

An instrumentation point can be selected by checking the box next to the item in
the tree. This allows the user to specify one or more points to be instrumented in
the application executable simultaneously. The executable is not instrumented until
the Instrument executable button is pressed, or the Instrument Executable option
is selected from the view's pop-up menu.

During the instrumentation process, a dialog will be displayed to indicate the
status of the instrumentation, or if the instrumentation fails for some reason.

Running the instrumented application

In order to run the instrumented application, a Profile Configuration must first be
created that contains all the settings necessary to successfully submit the job and
collect the required performance data. A profile configuration is only created once
for each combination of settings, and can be reused for multiple runs of the
application.

The Profile Configurations dialog is opened from the main Run menu. Figure 7 on
page 31 shows the Profile Configurations dialog when it is first opened.

Figure 6. Expanded instrumentation view

30 High Performance Computing Toolkit: Installation and Usage Guide

If a profile configuration for your application does not exist, you can create a new
configuration using this dialog. To do this, select Parallel Application from the list
on the left side of the dialog, then click the New icon just above that list. You can
have as many profile configurations as you want, and can have multiple profile
configurations for the same application each with different settings.

Once you have created a profile configuration, you enter the necessary data in the
Resources, Application, Arguments, Environment, and Performance Analysis tabs
before running your application. There must not be any errors on any of the tabs
within the configuration, or the application will not be able to be run.

The Resources tab is used to specify the type of target system and any necessary
options required to run the application. Figure 8 on page 32 shows the Resources
tab.

Figure 7. Profile Configurations dialog

Chapter 6. Using the hpctView application 31

The first step in filling out the Resources tab is to ensure that the Target System
Configuration is correctly selected from the drop-down list at the top of the panel.
By default, the IBM Parallel Environment configuration will be selected. In most
cases, this should be the correct configuration to use. If this is not correct for your
system, you can select an alternative configuration from the drop-down list. Next,
check that the connection you specified when opening the executable is selected in
the Remote drop-down in the Connection Type section. If you have multiple
systems on which instrumented executables are available, you could select a
different connection here. Assuming that you are using the IBM Parallel
Environment target system configuration, you should now enter the required IBM
PE run-time options by clicking the tabs on the panel and filling in the required
values. In particular, you will need to provide a Host list file and the Number of
application tasks for the job to run.

Figure 9 on page 33 shows the Application tab, which specifies the application
program.

Figure 8. Resources tab

32 High Performance Computing Toolkit: Installation and Usage Guide

The Application tab will be preconfigured to automatically run the instrumented
executable, and will display the path to the executable in the Application program
field. If this is not correct, or you want to run a different executable, deselect the
Run instrumented executable checkbox and then enter the absolute path name to
the executable on the target system. The Browse button can also be used to browse
for the executable.

The Arguments tab, which looks like that shown in Figure 10 on page 34, can be
used to specify any application program arguments by entering them in the
Program arguments field. Leave this field empty if there are no arguments. This
tab can also change the working directory used when the program is executed.
This might be required if the program expects to access files in a particular
location. By default, the working directory will be the directory containing the
executable. If this needs to be changed, uncheck Use default working directory
and enter or browse for the new location.

Figure 9. Application tab

Chapter 6. Using the hpctView application 33

The Environment tab, which looks like that shown in Figure 11 on page 35, can be
used to specify any additional environment variables that are required by your
application. You can add environment variables to the set passed to your
application by clicking the New button and filling in the environment variable
name and value in the pop-up dialog.

You can modify existing environment variables by clicking the environment
variable in the list, clicking Edit, and modifying the setting in the pop-up dialog.
You can remove environment variables from the set passed to your application by
clicking the environment variable name in the list and clicking Remove.

The radio buttons at the bottom of the panel control how the environment
variables interact with the target environment. If Append environment to native
environment is selected, any environment variables you set will be appended to
the target environment prior to executing the program. If Replace native
environment with specified environment, only those environment variables set in
this tab (and generated by other tabs) will be used when executing the program.

Note: Do not set IBM Parallel Environment or IBM HPC Toolkit environment
variables in the Environment tab because those settings might conflict with values
set on other panels.

Figure 10. Arguments tab

34 High Performance Computing Toolkit: Installation and Usage Guide

The Performance Analysis tab is used to specify the IBM HPC Toolkit run-time
options, and is shown in Figure 12 on page 36.

Figure 11. Environment tab

Chapter 6. Using the hpctView application 35

The Performance Analysis tab contains the subtabs, Common, HPM, GPM, MPI,
and MIO that are used to set run-time options for the hardware performance
counter, MPI analysis, and I/O analysis tools. The HPM, GPM, MPI, and MIO
subtabs are described in more detail in the following topics:
v Chapter 7, “Using hardware performance counter profiling,” on page 41
v Chapter 8, “Using GPU hardware counter profiling,” on page 47
v Chapter 9, “Using MPI profiling,” on page 53
v Chapter 10, “Using I/O profiling,” on page 61

The Common subtab (shown in Figure 12) specifies settings that are common to all
performance tools. These settings are as follows:

Output file name format
The format used to name output data files. This corresponds to the
HPC_OUTPUT_NAME environment variable, and is normally a prefix like
"hpct" that will be prepended to the file name.

Generate unique filenames
If selected, this will append the process ID of the application to the
filename. This corresponds to the HPC_UNIQUE_FILE_NAME
environment variable, and is essential for parallel programs so that each
task will generate a separate data file.

Note: For more information about file names for the Output file name format or
Generate unique filenames options, see Appendix A, “Performance data file
naming,” on page 197.

Figure 12. Performance Analysis tab

36 High Performance Computing Toolkit: Installation and Usage Guide

Use hpcrun
This enables use of the hpcrun command in order to collect performance
data for a subset of application tasks.

When performance data is collected for a subset of application tasks, you
must specify the collection criteria and number of tasks. See “hpcrun -
Launch a program to collect profiling or trace data” on page 122 for more
information.

Application time criteria
Only used if Use hpcrun is selected. Specifies the time criteria used to
determine which tasks will have data collected.

ELAPSED_TIME
Determines the subset of tasks using elapsed wall clock time.

CPU_TIME
Determines the subset of tasks using CPU time.

Exception task count
Only used if Use hpcrun is selected. This field is used to specify the
number of application tasks that for which performance data will be
collected. This value will determine how many tasks with the minimum
value for the time criteria and how many tasks with the maximum value
for the time criteria will have their data collected. In addition, data will be
collected for the task closest to the average for the time criteria, and for
task zero.

Trace collection mode
Only used if Use hpcrun is selected. When collecting traces for MPI tracing
or I/O profiling, you must select the collection model to use by specifying
either memory or two path names separated by a comma. The first path
name is used to hold MPI trace data and the second path name is used to
hold I/O trace data If you specify memory, then the trace for each
application task is stored in application memory until MPI_Finalize is
called. If you specify a pair of path names, then trace data is temporarily
collected in those files until the application exits, then the final trace files
are generated.

For more information about the settings on this panel, use Table 5 to reference the
corresponding environment variable description in “hpmInit, f_hpminit - Initialize
the Hardware Performance Monitor (HPM) run-time environment” on page 153.

Table 5. Profile Configurations dialog Common environment variables

Profile configuration field Environment variable name

Output file name HPC_OUTPUT_NAME

Generate unique filenames HPC_UNIQUE_FILE_NAME

Use hpcrun HPC_USE_HPCRUN

Application time criteria HPC_EXCEPTION_METRIC

Exception task count HPC_EXCEPTION_COUNT

Trace collection mode HPC_TRACE_STORE

Once you have filled in all the panels in the Profile Configurations dialog and
have no error messages displayed, you can run your application by clicking the
Profile button. Your application runs using the specified settings. If your
application generates any output during its run, this output will be displayed in

Chapter 6. Using the hpctView application 37

the Console view. The Console view is also a good place to check that the
program ran successfully. If the program failed, the reason for the failure should
also be displayed here.

When your application completes, hpctView will display a pop-up dialog asking
you if you want to view the performance data. If you click Yes, then the
visualization files generated by the instrumented executable will be added to the
list in the Performance Data view.

Viewing performance data

The performance data files created by your application are added to the list in the
Performance Data view. If you did not respond yes to the pop-up dialog asking if
the performance data files should be loaded, then you can load them manually in
hpctView using the Load Viz Files... item in the main File menu. You can load
them manually in Eclipse PTP by following these steps:
1. Select one or more performance data files in the Project Explorer view.
2. Right click over those files and move the mouse over the HPCT entry in that

menu.
3. Click the Open Performance Files menu entry.

Once the performance files have been loaded, the Performance Data view will look
like Figure 13.

Figure 13. Performance Data view after loading performance files

38 High Performance Computing Toolkit: Installation and Usage Guide

|
|
|
|
|

|

|
|

|

The contents of the performance data files can be viewed by clicking one or more
file names in the Data Files list. Figure 14 shows the performance data from rank 1
of the application.

If multiple files are selected, the data from the files will be aggregated where
possible, and the results will show the average values.

Initially, the Performance Data view will show a tree view of the data collected.
You can expand all nodes in the tree by clicking the + button or individual nodes
by clicking the triangle next to the node. You can collapse all nodes by clicking the
- button or individual nodes by clicking the triangle next to the nodes. You can
switch to a tabular mode by clicking on the Show Data as Flat Table button and
then switch back to the tree mode using the Show Data as Tree button.

Figure 15 on page 40 shows the same data viewed as a table.

Figure 14. Performance Data view showing application data

Chapter 6. Using the hpctView application 39

Each row in the tree or table shows some of the data that was obtained for each
instrumented location in the application that was executed. You can sort the tree or
table by any column. To do this, click the column header of the column.

Rows in the tree or table can be filtered by entering text in the filter box. Only
rows with label text that contains the text in the filter box will be displayed. This is
an easy way to reduce the amount of information that is being displayed.

Source code for an instrumentation point can be examined by double clicking on
the node, or right-clicking and selecting Show source from the pop-up menu. This
will open the source file containing the code where the instrumentation point is
located, and the corresponding code region will be highlighted in the source code
window.

Figure 15. Performance Data view in tabular mode

40 High Performance Computing Toolkit: Installation and Usage Guide

Chapter 7. Using hardware performance counter profiling

The following topics provide information about profiling an application using
hardware performance counters.

Preparing an application for profiling

Note: The application must not be compiled with the -pg flag.

The application should not contain any calls to functions listed in Table 19 on page
131, because those calls might interfere with correct operation of the
instrumentation inserted into the executable. The application should not be linked
with the hardware performance counter library, (libhpc.so) and must be compiled
and linked with the -g flag. When the application is compiled on a Power Linux
system, the following compiler flags must be used:
-Wl,--hash-style=sysv -WI,--emit-stub-syms

Instrumenting the application

Start hpctView and load the application executable as described in “Working with
the application” on page 25. Once the executable has been opened, make sure the
HPM tab in the Instrumentation view is visible by selecting it (it is normally the
default tab to be displayed).

© Copyright IBM Corp. 2008, 2015 41

Figure 16 shows the HPM tab with a number of instrumentation points selected.
There are three classes of instrumentation points that can be shown in this tree:
1. The Function Body section lists all the function entry and exit points. Each

item in this section is labeled with the name of the function.
2. The Function Call section lists all the function call sites, or locations where the

functions are invoked. Each item in this section is labeled with the name of the
function being called and with the line number of the function call.

Figure 16. HPM instrumentation tab

42 High Performance Computing Toolkit: Installation and Usage Guide

3. The HPM Region section (not shown in Figure 16 on page 42) lists all the
user-selected regions of code, such as a loop, that have been instrumented. The
items in this section are labeled with the source file name and the starting and
ending line numbers for the region.

Instrumenting a function call site obtains hardware performance counter
measurements for that the specific instance of the function being called. The
measurements are reported independently of any other call to the same function.

Instrumenting function entry and exit points obtains hardware performance
counter measurements for that function every time that function is called,
regardless of the caller.

Instrumenting a user-defined region obtains hardware performance measurements
specifically for that region of code. Any region of code can be instrumented with
the condition that the statements at both the start and end of the region must be
executed each time the code region is executed. For example, when instrumenting
a branch statement, the branch test and the statement following the branch must
be instrumented to ensure the correct data is collected. There is no restriction on
the number of user-defined regions that can be instrumented. User-defined regions
can also overlap if desired.

User-defined regions are specified by highlighting a region of source code and then
adding that region to the HPM Region section in the Instrumentation view. To add
a region, first open the required source file in the source code window, left-click on
the starting line of the region, then drag the mouse while the left mouse button is
pressed until all required source code lines are highlighted. After the required lines
are selected, right-click in the source code window and select the Add to HPM
option from the pop-up menu.

Any combination of function call sites, function entry and exit points, and
user-defined regions can be instrumented. You can select instrumentation by
individually selecting items in the Instrumentation view or you can select a group
of items by selecting a parent item in the tree.

After you have selected the set of instrumentation points that you require, the
instrumented application is created by right-clicking in the Instrumentation view
and selecting Instrument Executable, or by clicking the Instrument button on the
toolbar in the Instrumentation view.

Running the instrumented application

Before running the instrumented application, create and configure a Profile
Configuration as outlined in “Running the instrumented application” on page 30.
In addition, all options in the HPM subtab of the Performance Analysis tab must
be set correctly. Figure 17 on page 44 shows the HPM subtab settings.

Chapter 7. Using hardware performance counter profiling 43

In order to generate performance data when the instrumented application is run,
either the Derived metric name or a Hardware performance counter group must
be selected and either the Generate visualization files or Generate ASCII data file
options must be selected. If the Generate visualization files option is selected, the
application profile information will be generated in a format that can be loaded
into hpctView and displayed in the Performance Data Analysis view. If the
Generate OTF2 trace files option is selected, files containing hardware event
counter trace data will be generated in OTF2 format.

Note: Tracing will collect each event counter every time an instrumented function
is executed, a call site is executed, or an instrumented region of code is executed.
As a result, trace files can quickly become very large, so caution should be
exercised when enabling this option.

For more information about settings on this panel, use Table 6 to reference the
corresponding environment variable description in “hpmInit, f_hpminit - Initialize
the Hardware Performance Monitor (HPM) run-time environment” on page 153.

Table 6. HPM profile configuration dialog environment variables

Profile configuration field Environment variable name

Hardware counter group HPM_EVENT_SET

Aggregation plugin name HPM_AGGREGATE

Time slice duration HPM_SLICE_DURATION

MPI task to display results HPM_PRINT_TASK

Figure 17. HPM subtab containing hardware counter settings

44 High Performance Computing Toolkit: Installation and Usage Guide

|
|
|
|
|
|
|
|

|
|
|
|

Table 6. HPM profile configuration dialog environment variables (continued)

Profile configuration field Environment variable name

Generate ASCII data file HPM_ASC_OUTPUT

Generate visualization files HPM_VIZ_OUTPUT

Generate OTF2 trace files HPM_TRACE

Write to stdout HPM_STDOUT

Exclusive values HPM_EXCLUSIVE_VALUES

Print formulas HPM_PRINT_FORMULA

Viewing hardware performance counter data

Once the instrumented application has finished running, a dialog will be displayed
indicating that the data files were generated and can be loaded. Select yes to load
them into hpctView. If the files are not loaded at the completion of the run, they
can be loaded manually at a later time.

“Viewing performance data” on page 38 describes how to open performance data
files and view different presentations of that data.

Chapter 7. Using hardware performance counter profiling 45

||

46 High Performance Computing Toolkit: Installation and Usage Guide

Chapter 8. Using GPU hardware counter profiling

The following topics provide information about profiling an application using GPU
hardware performance counters.

Preparing an application for profiling

Note: The application must not be compiled with the -pg flag.

The application should not contain any calls to functions listed in Table 19 on page
131, because those calls might interfere with correct operation of the
instrumentation inserted into the executable. The application should not be linked
with the hardware performance counter library, (libhpc.so) and must be compiled
and linked with the -g flag. When the application is compiled on a Power Linux
system, the following compiler flags must be used:
-Wl,--hash-style=sysv -WI,--emit-stub-syms

Instrumenting the application

To instrument the application, start hpctView and load the application executable
as described in “Working with the application” on page 25. Once the executable
has been opened, make sure the HPM tab in the Instrumentation view is visible
by selecting it (it is normally the default tab to be displayed).

Figure 16 on page 42 shows the HPM tab with a number of instrumentation points
selected. There are three classes of instrumentation points that can be shown in this
tree:
1. The Function Body section lists all the function entry and exit points. Each

item in this section is labeled with the name of the function.
2. The Function Call section lists all the function call sites or locations where the

functions are invoked. Each item in this section is labeled with the name of the
function being called and with the line number of the function call.

3. The HPM Region section (not shown in Figure 16 on page 42) lists all the
user-selected regions of code, such as a loop, that have been instrumented. The
items in this section are labeled with the source file name and the starting and
ending line numbers for the region.

GPU kernels and CUDA functions are instrumented by identifying their location in
the code, then instrumenting the function body, function call, or code region
containing the kernel or function calls of interest.

Code regions are specified by highlighting a section of source code and then
adding that region to the HPM Region section in the Instrumentation view. To
add a region, do the following:
1. Open the required source file in the source code window.
2. Left-click on the starting line of the region, then drag the mouse while the left

mouse button is pressed until all required source code lines are highlighted.
3. After the required lines are selected, right-click in the source code window and

select the Add to HPM option from the pop-up menu.

© Copyright IBM Corp. 2008, 2015 47

|

|

|
|

|
|

|

|
|
|
|
|
|

|

|
|

|
|
|
|

|
|
|

|
|

|
|
|

|
|
|
|

|
|
|

|
|
|

|

|
|

|
|

Any combination of function call sites, function entry, and exit points, and
user-defined regions can be instrumented. You can select instrumentation by
individually selecting items in the Instrumentation view or you can select a group
of items by selecting a parent item in the tree.

After you have selected the set of instrumentation points that you require, the
instrumented application is created by right-clicking in the Instrumentation view
and selecting Instrument Executable, or by clicking the Instrument button on the
toolbar in the Instrumentation view.

Running the instrumented application

Before running the instrumented application, create and configure a Profile
Configuration as outlined in “Running the instrumented application.” In addition,
all options in the GPM subtab of the Performance Analysis tab must be set
correctly. Figure 18 shows the GPM subtab settings.

In order to generate performance data when the instrumented application is run, a
device type must be selected from the Select device type drop down. Once a
device has been selected, metrics can be selected from the Select GPU metric list
by clicking the checkbox next to the desired metric.

Figure 18. GPM subtab containing GPU metrics settings

48 High Performance Computing Toolkit: Installation and Usage Guide

|

|
|
|

|
|
|
|

|
|
|
|

|
|

|
|
|
|

|

|
|
|
|

For more information about settings on this panel, use Table 7 to reference the
corresponding environment variable description in “hpmInit, f_hpminit - Initialize
the Hardware Performance Monitor (HPM) run-time environment” on page 153

Table 7. GPM profile configuration dialog environment variable

Profile configuration field Environment variable name

Select GPU metric GPM_METRIC_SET

Viewing GPU hardware performance counter data

Once the instrumented application has finished running, a dialog will be displayed
indicating that the data files were generated and can be loaded. Select yes to load
them into hpctView. If the files are not loaded at the completion of the run, they
can be loaded manually at a later time.

When the performance data is loaded, the Trace View will open automatically to
display a visualization of the performance data. Figure 19 on page 50 shows
example data being displayed in the Trace View.

The horizontal axis of the graph displays the timestamp associated with each trace
record. The vertical axis displays the counter or metric value. A different colored
line on the graph is used for each counter or metric, and a legend is displayed at
the bottom of the view showing which color corresponds to the counter or metric
value. Counters with widely varying values can also be displayed, as the left hand
vertical axis displays a linear scale, while the right hand vertical axis displays a
logarithmic scale. Very large or small values will be placed on the logarithmic scale
rather than the linear scale so they can easily be viewed.

Chapter 8. Using GPU hardware counter profiling 49

|
|
|

||

||

||
|

|
|

|
|
|
|

|
|
|

|
|
|
|
|
|
|
|

|

Displaying combined CPU and GPU performance data

It is possible to display combined CPU and GPU performance data on a single
timeline. This is done by using the following three step process:
1. Instrument an application to collect either CPU or GPU (or both) performance

data, and run the application. Once the application has completed execution,
load the CPU or GPU performance data into the user interface using the
File→OTF2 Trace→Load Trace (*.otf2) menu. At this point, a view should be
displayed showing the trace information.

2. If the application was instrumented only to collect CPU or GPU performance
data, instrument the application again for the alternative data to be collected,
then run the application again. If the application was instrumented to collect
both CPU and GPU data, skip to step 3.

Figure 19. Trace View displaying GPU performance data from an MPI program

50 High Performance Computing Toolkit: Installation and Usage Guide

|

|
|
|
|

|
|

|
|

|
|
|
|
|

|
|
|
|

3. Ensure that the Trace View that you want to display the combined data is
visible. Add the additional performance data by using the File→OTF2
Trace→Add Trace (*.otf2) menu. The Trace View should now show the
combined data.

Chapter 8. Using GPU hardware counter profiling 51

|
|
|
|

52 High Performance Computing Toolkit: Installation and Usage Guide

Chapter 9. Using MPI profiling

The topics that follow provide information about profiling the MPI calls in an
application.

Preparing an application for profiling

Note: The application must not be compiled with the -pg flag.

The application should not contain any calls to functions listed in Table 19 on page
131, because those calls might interfere with correct operation of the
instrumentation inserted into the executable. The application should not be linked
with the MPI profiling library, (libmpitrace.so) and must be compiled and linked
with the -g flag. When the application is compiled on a Power Linux system, the
following flags must be used:
-Wl,--hash-style=sysv -WI,--emit-stub-syms

The MPI profiling library cannot be used to create a trace for an application that
issues MPI function calls from multiple threads in the application.

Instrumenting the application

Start hpctView and load the application executable as described in “Working with
the application” on page 25. Once the executable has been opened, make sure that
the MPI tab is visible in the Instrumentation view by selecting it. Figure 20 on
page 54 shows the MPI instrumentation tab.

© Copyright IBM Corp. 2008, 2015 53

The MPI instrumentation tab shows the instrumentation points tree expanded,
displaying all MPI function calls that can be instrumented. Each instrumentation
location is labeled with the name of the MPI function and the line number where
the MPI function call is located.

Any number of MPI instrumentation points can be selected. If a leaf node in the
tree is selected, only a single MPI function call is instrumented. If a node labeled
with an application function name or file name is selected, all MPI function calls

Figure 20. MPI instrumentation tab

54 High Performance Computing Toolkit: Installation and Usage Guide

within the file or function named by the enclosing node are instrumented. MPI
function calls can be deselected by clicking the corresponding highlighted node in
the instrumentation points tree.

MPI function calls can also be instrumented from the source view. With a source
view open, left-click on a starting line and drag to the end of the region of interest
while holding the left mouse button down. All MPI function calls in this region of
code can then be instrumented by right-clicking and selecting Select MPI. The tree
in the Instrumentation view will be updated with the instrumentation points
accordingly. The same process can be used to deselect instrumentation points. To
do this, select the region of code, right click, then choose Deselect MPI from the
pop-up menu.

Once the set of instrumentation points has been selected the application executable
is instrumented by right-clicking in the Instrumentation view, then clicking
Instrument Executable, or by clicking the Instrument icon in the toolbar in the
Instrumentation view.

Running the application

Before running the instrumented application, a Profile Configuration needs to be
created and configured, as outlined in “Running the instrumented application” on
page 30. An application with MPI instrumentation will always generate MPI profile
information, however to generate MPI trace information, the options in the MPI
subtab of the Performance Analysis tab must be set correctly. Figure 21 on page 56
shows the MPI subtab trace settings.

Chapter 9. Using MPI profiling 55

The Enable MPI call tracing setting is used to enable or disable MPI tracing. If the
checkbox is unselected, the remaining settings will be disabled, and the
instrumented application will not generate MPI trace data. If the checkbox is
selected, then MPI tracing will be enabled, and the remaining settings will be used.

By default, the MPI profiling library enables tracing for only the first 256 tasks. If
tracing is required for more tasks, set the task number with the highest rank in the
Maximum trace rank field, or select Enable tracing for all tasks. In addition, the
profiling library normally only generates trace files for the enabled tasks with the
minimum, maximum, and median MPI communication time. A trace will also be
generated for task zero if task zero is not the task with minimum, maximum, or
median MPI communication time. To generate trace files for all enabled tasks,
select the Generate traces for all enabled tasks option. If the application executes
many MPI function calls, it might be necessary to increase the value of the
Maximum trace events setting to a higher number than the default to avoid
overwriting the event buffer. The application will normally display a message
indicating that an event buffer overflow occurred.

For more information about the settings on this panel, use Table 8 to reference the
corresponding environment variable description in “MT_trace_start, mt_trace_start
- Start or resume the collection of trace events” on page 192.

Table 8. MPI trace profile configuration environment variables

Profile Configurations field name Environment variable

Enable MPI call tracing TRACE_ALL_EVENTS

Figure 21. Subtab containing MPI trace settings

56 High Performance Computing Toolkit: Installation and Usage Guide

Table 8. MPI trace profile configuration environment variables (continued)

Profile Configurations field name Environment variable

Maximum trace events MAX_TRACE_EVENTS

Enable tracing for all tasks OUTPUT_ALL_RANKS

Maximum trace rank MAX_TRACE_RANK

Generate traces for all enabled tasks OUTPUT_ALL_RANKS

Traceback level TRACEBACK_LEVEL

You can run your application as described in “Running the instrumented
application” on page 30.

Viewing MPI profiling data

Once the instrumented application has finished running, a dialog will be displayed
indicating that the data files were generated and can be loaded. Select yes to load
them into hpctView. If the files are not loaded at the completion of the run, they
can be loaded manually at a later time. Figure 22 shows the MPI profiling
information displayed in the Performance Data view.

This view shows the number of times each function call was executed, the total
time spent executing that function call, and the amount of data transferred by that

Figure 22. Performance Data view with MPI profiling data

Chapter 9. Using MPI profiling 57

function call. The data can also be viewed in tabular format by selecting the Show
Data as a Flat Table button from the view toolbar.

The performance data view shows data from a single task at one time. If you want
to see performance data from a different task, select that task from the Data Files
panel in the view. If you select multiple files simultaneously the view will display
the aggregated data.

Viewing MPI traces

A trace of the MPI activity in the application can be viewed by right-clicking in the
Data Files panel and selecting Load Trace Data from the pop-up menu. The trace
file will then be loaded and the MPI Trace view opened. This could take some
time if the trace file is very large. Figure 23 shows the MPI trace view.

The panel on the right side of the MPI Trace View is used to select which MPI
functions are displayed in the trace on the left side of the view. Initially, all MPI
function calls that were executed are displayed. Trace events for specific MPI
functions can be hidden or displayed by clicking on the MPI function labels in the
list. Trace events are displayed for MPI functions that have their labels checked
while trace events are hidden for MPI functions with unchecked labels.

The left panel is the MPI trace viewer. This pane displays a timeline-based view of
the application's execution, where the Y axis is the application task rank and the X
axis is elapsed time. Each MPI function call is represented by a block drawn in the

Figure 23. MPI trace view

58 High Performance Computing Toolkit: Installation and Usage Guide

color matching the MPI function label in the right pane. The numbers in the
middle of the trace are timestamps identifying those points in the trace timeline.

The toolbar above the trace panel provides controls for navigating through the
trace. These are described in more detail in Table 9:

Table 9. MPI trace timeline navigation

Button Description Action

Push Left Scrolls the trace left
(decreasing time)

Push Right Scrolls the trace right
(increasing time)

Zoom In Horizontal Zoom in on the X (time) axis

Zoom Out Horizontal Zoom out on the X (time)
axis

Restore Horizontal Reset the X axis to its initial
state

Zoom In Vertical Zoom in on the Y (task) axis

Zoom Out Vertical Zoom out on the Y (task)
axis

Restore Vertical Reset the Y axis to its initial
state

The trace can be scrolled horizontally or vertically by using the scroll bars at the
bottom and right of the panel respectively. It is also possible to zoom in on the X
axis by left-clicking at a point in the timeline, then dragging the mouse left or right
to the desired ending point in the timeline then releasing the left mouse button.

If you double left-click over an MPI function's trace entry, the source file where the
MPI function call was made will be displayed. If you right-click and hold the right
mouse button over an MPI function's trace entry, it will display a pop-up with
additional information about the function call.

Chapter 9. Using MPI profiling 59

60 High Performance Computing Toolkit: Installation and Usage Guide

Chapter 10. Using I/O profiling

The topics that follow provide information about profiling the I/O usage of an
application.

Preparing an application for profiling

Note: The application must not be compiled with the -pg flag.

The application must be compiled and linked with the -g compiler flag. When the
application is compiled on a Power Linux system, the following compiler flags
must be used:
-Wl,--hash-style=sysv -WI,--emit-stub-syms

Instrumenting the application

Start hpctView and load the application executable as described in “Working with
the application” on page 25. Once the executable has been opened, make sure the
MIO tab in the Instrumentation view is visible by selecting it. Figure 24 on page
62 shows the MIO instrumentation view.

© Copyright IBM Corp. 2008, 2015 61

The MIO instrumentation view shows the instrumentation points in the tree fully
expanded. The leaf nodes are labeled with the name of the system call at that
location and the line number in the source file. Selecting a leaf node will place
instrumentation only at the specific instrumentation point. Selecting a non-leaf
node will place instrumentation at all leaf nodes that are child nodes of the
selected non-leaf node.

Note: In order for I/O profiling data to be collected for a file, the open and close
system calls that open and close the file must be instrumented.

Figure 24. MIO instrumentation view

62 High Performance Computing Toolkit: Installation and Usage Guide

After you have selected the required instrumentation points, the application
executable is instrumented by right-clicking in the Instrumentation view, then
selecting Instrument Executable, or by clicking the Instrument button in the
toolbar in the Instrumentation view.

Running the application

I/O profiling works by intercepting I/O system calls for any files for which
performance measurements are to be obtained. In order to obtain the performance
measurement data, the I/O profiling options setting on the MIO subtab of the
Performance Analysis tab configured to use the following:
*[trace/xml/events]

This specifies:
v A file-name-matching pattern (* in this case)
v The use of the MIO trace module
v The xml and events options for the trace module

The effect of this setting is to instruct MIO to apply the options to all files opened
by the application, generate performance data in XML format, and to use the
default naming for the I/O trace file. The MIO subtab of the Performance
Analysis tab is shown in Figure 25.

For more information about settings on this panel, use Table 10 on page 64 to
reference the corresponding environment variable description.

Figure 25. MIO subtab of the Performance Analysis tab

Chapter 10. Using I/O profiling 63

Table 10. MIO profile configuration environment variables

Profile configuration field name Environment variable

Default profiling options MIO_DEFAULTS

I/O profiling options MIO_FILES

Viewing I/O Data

Once the instrumented application has finished running, a dialog will be displayed
indicating that the data files were generated and can be loaded. Select yes to load
them into hpctView. If the files are not loaded at the completion of the run, they
can be loaded manually at a later time. Figure 26 shows the Performance Data
view with I/O profiling data.

Initially, the data is displayed in a tree view. Each non-leaf node represents a data
file that was accessed by the application. Each leaf node shows, for a particular
file, the number of times that function call was executed (EVENT COUNT) and
the time spent in an I/O function call (CUMULATIVE TIME).

Selecting the Show Data as a Flat Table button switches to a table view. In
addition to the previous information, the table view also displays the following
(depending on which I/O operations are being profiled):
v Cumulative bytes requested
v Cumulative bytes delivered

Figure 26. Performance Data view displaying the I/O profiling data.

64 High Performance Computing Toolkit: Installation and Usage Guide

v Minimum request size (bytes)
v Maximum request size (bytes)
v Rate (bytes)
v Suspend wait count
v Suspend wait time
v Forward seeks average
v Backward seeks average

I/O tracing information can be viewed by right-clicking the Data Files panel of the
Performance Data view and selecting the Load Trace Data menu. The trace file
will be loaded and then displayed in the MIO Data view. The MIO Data view
displaying trace data is shown in Figure 27.

The MIO Data view contains two panels:
1. A Data Files panel that lists the individual performance data files
2. A Trace Data panel that provides tree view of the trace data.

In the Trace Data panel, the top-level nodes in the tree represent individual files
that the application accessed. The next level nodes represent the application
program, and the leaf nodes represent the I/O function calls executed in the
application. Selecting a leaf node will include the data from that nodes in the
display. The remainder of the view displays the trace data either as a table (the
default) or as a data plot. It is possible to switch between these views using the
Show Data as a Table and Show Data as a Graph buttons. Figure 28 on page 66

Figure 27. MIO Data view showing I/O trace data

Chapter 10. Using I/O profiling 65

shows the same trace data displayed as a graph. By selecting or deselecting nodes
in the tree, it is possible to change the data that is included in the graph.

When the graph is initially displayed, the Y axis represents the file position, in
bytes. The X axis of the graph always represents time in seconds. It is possible to
zoom in to an area of interest in the graph by left-clicking at one corner of the
desired area and dragging the mouse while holding the left button to draw a box
around the area of interest and releasing the left mouse button. Once the left
mouse button is released , the graph will be redrawn showing the zoomed area. As
you drag the mouse, the X and Y coordinates of the lower left corner of the box
and the upper right corner of the box and the slope of the line between those two
corners is displayed as text in the status bar area at the bottom of the view. The
view can be restored to the unzoomed state by double clicking anywhere in the
graph. It is possible to determine the I/O data transfer rate at any area in the plot
by right-clicking over the desired starting point in the plot and holding down the
right mouse button, while tracing over the section of the plot of interest. The
coordinates of the starting and ending points of the selection region and the data
transfer rate (slope) are displayed in the status area at the bottom of the view.

Figure 28. MIO Data view showing a graph of the trace data

66 High Performance Computing Toolkit: Installation and Usage Guide

Chapter 11. Using Call Graph analysis

In addition to displaying profiling and trace data generated by the binary
instrumentation tools, the hpctView application can also be used to display
gprof-format call graph and histogram information. This topics that follow describe
the steps necessary to collect and display this information.

Preparing the application

There are two methods for generating gprof data that can be viewed with
hpctView:
1. The first method is to compile your application using the -pg compiler flag.

This flag instructs the compiler to add special library functions to your code to
generate the gprof-format data. Depending on the application type and the
runtime system used, this might generate one or more gmon.out files. When
running using the IBM Parallel Environment, an MPI application will generate
one gmon.out file for each MPI task, with each gmon.out file being placed in a
separate directory.

Note: Application executables compiled with -pg cannot be instrumented using
the binary instrumentation tool discussed in the previous topics.

2. The second approach is to use a tool such as opgprof to convert the data
generated from an Oprofile session into a gprof compatible format.
For more information, see the following:
v opgprof(1) manual page (man7.org/linux/man-pages/man1/opgprof.1.html)
v oprofile(1) manual page (man7.org/linux/man-pages/man1/oprofile.1.html)

Running the application

If the application has been compiled with the -pg flag, then all that is necessary is
to run the application and the gmon.out files will be automatically created. The
application can be run using the Profile Configuration used to run an
instrumented application, or run manually on the target system.

Oprofile is a system-wide statistical profiling tool. To collect data using Oprofile,
the profiling needs to be enabled while the application is being run. Consult the
oprofile(1) manual page (man7.org/linux/man-pages/man1/oprofile.1.html) for
more information on profiling a single application.

Viewing profile data

Once the gprof data has been generated, viewing the data is a two-step process.
Before loading the gmon.out files, the executable that generated the data must first
be opened. This is done in the same way that an executable is opened for
instrumentation, using the Open Executable... option from the main File menu.
Once this is done, a gmon.out file is loaded using the Load Call Graph... option
from the main File menu.

At this point two views will be opened, the Call Graph view and the gprof view.

© Copyright IBM Corp. 2008, 2015 67

http://man7.org/linux/man-pages/man1/opgprof.1.html
http://man7.org/linux/man-pages/man1/oprofile.1.html
http://man7.org/linux/man-pages/man1/oprofile.1.html

Viewing the Call Graph

The Call Graph view is shown in Figure 29.

The Details panel is used to display some information about the file being viewed.
The Profile File field shows the path to the data file that was opened. The
Program Executable field shows the path to the corresponding executable. The
Total CPU field displays the total CPU time for the application run. This panel can
be closed to provide more space to display the call graph.

The Call Graph panel displays a pictorial representation of the application call
graph. Boxes are labeled with the name of the function, and arrows are used to
indicate callers and callees, and are labeled with the number of calls. The shape of
the box provides a 2-D representation of the execution time. The height of the box
shows the time spent in the function itself. The width of the box shows the time
spent in the function and all its descendents. This representation provides a very
quick method for identifying those functions that may be causing a bottleneck in
the application.

Boxes are color coded as follows:

Green The main function of the program.

Yellow
The currently selected function.

Figure 29. Call Graph view

68 High Performance Computing Toolkit: Installation and Usage Guide

Orange
All functions being called by the currently selected function.

Gray Functions that are not currently of interest.

This panel also provides a toolbar with a number of controls to manipulate the
display. These controls are (from left to right):

Search for functions
Used to locate specific functions, particularly for large graphs. Entering
text in this box will highlight any function with a name that contains the
text.

Scale Allows the diagram to be easily scaled in order to fit into the display area,
or to provide a more detailed view of part of the graph.

Focus Replaces the current graph with the sub-graph of the selected function. The
same affect can be achieved by double-clicking on one of the function
boxes.

Show Callees and Show Callers
Used to switch the graph from displaying the call tree for the top most
function to showing which functions call the top most function in the
current display.

Back and Forward
Used to navigate the hierarchy of functions when using the Focus button.

Snapshot
Used to create an image of the current display. This image can then be
saved if desired.

The Options panel provides a number of options for controlling the graph display:

Show Execution Times
Controls displaying the execution time information using the shape of the
boxes. Turning this off will use a single box size for all functions.

Show Call Counts
Controls displaying the call counts on the graph arrows.

Layout Direction
Enables the graph to be laid out either top-to-bottom or left-to-right.

Function Name Filter
These two fields can be used to filter out functions from the graph in order
to reduce clutter. Both fields take regular expressions. The upper box will
include any function with a name that matches the regular expression in
the graph. The lower box will exclude any function with a name that
matches the regular expression from the graph.

Viewing gprof data

The gmon view is shown in Figure 30 on page 70.

Chapter 11. Using Call Graph analysis 69

The Details panel is used to display some information about the file being viewed.
The Profile File field shows the path to the data file that was opened. The
Program Executable field shows the path to the corresponding executable. The
Timestamp field displays the date and time that the data was collected.

The gmon Data panel displays a tabular representation of the sampled data. The
first column of the table shows a tree representation of the program structure, with
names representing the aggregation unit. At the top level is Summary, which
displays aggregated data for the whole program. The next level is the file name,
followed by the function name, lines within the function, and finally an address (or
location) within the program. The other columns show the aggregated data for
each node in the tree, and are as follows:

Samples
Shows the number of samples that were recorded for the program,
function, line, or address.

Time Only shown when the Switch Sample/Time button is activated. Shows the
time spent in the program, function, line, or address.

Calls Shows the number of times a function was called. Only displayed for the
function level.

Time/Call
Shows the average time per call for the function. Only displayed for the
function level.

Figure 30. The gmon view

70 High Performance Computing Toolkit: Installation and Usage Guide

% Time
Shows the percentage of the overall time that was spent in the program,
function, line, or address. This is displayed as a numeric percentage and as
a bar graph.

This panel provides a toolbar with a number of controls to manipulate the display.
These controls are (from left to right):

Enter filter text
Used to filter nodes in the first column. This can be helpful for locating a
know function or file if the list is very large.

Expand All and Collapse All
Provides a convenient way to expand and collapse all elements in the tree.

Show/Hide Columns
Enables columns to be removed (or re-added) to the table.

Export to CSV
Allows the table data to be exported as a CSV file.

Sorting
Opens a dialog that can be used to control sorting of the table columns.

The next four buttons control filtering of the data that is displayed in the table:

Samples Per File
Displays the sampled data for the file, function, line, and address levels.

Samples Per Function
Displays the sampled data for the function, line, and address levels.

Samples Per Line
Displays the sampled data for the line and address levels only.

Function Call Graph
Displays the samples as a call graph. Each function node will contain
parent and children nodes that can be used to navigate the call graph.

The remaining two buttons are as follows:

Switch Sample/Time
Changes the Samples column to display Time and vice versa.

Create Chart...
Can be used to create a chart (bar graph/pie chart) from a selection of the
sample data.

Chapter 11. Using Call Graph analysis 71

72 High Performance Computing Toolkit: Installation and Usage Guide

Part 4. The hardware performance counter tools

The topics in this part provide information about using the hardware performance
counter tools.

© Copyright IBM Corp. 2008, 2015 73

74 High Performance Computing Toolkit: Installation and Usage Guide

Chapter 12. Using the hardware performance counter tools

The IBM HPC Toolkit provides a command-line tool called hpccount and a library
called libhpc that access hardware performance counters to help you analyze your
application’s performance. You can use the hpccount command to report hardware
performance counter measurements for your entire application. You can obtain
measurements from a single hardware counter group. You can multiplex multiple
groups of hardware counters so that you can get an estimate of hardware
performance counter events for multiple groups in a single run of your application.
The hpccount command also can report derived metrics, which are additional
measurements computed from hardware performance counter measurements to
help you better understand your application’s performance.

You can use the hpcstat command to obtain overall system statistics for hardware
performance counters. The hpcstat command requires root access in order to obtain
system-wide statistics.

You can use the libhpc library to make more precise measurements of hardware
performance counter events by placing calls to regions of code in your application
that are of interest. The libhpc library provides the same features as the hpccount
command. In addition, this library supports the use of plug-ins to aggregate or
reduce hardware performance counter measurements made in multiple tasks of an
MPI application.

You must ensure that several environment variables required by the IBM HPC
Toolkit are properly set before you use the hardware performance counter tools. In
order to set these environment variables, you should run one of the setup scripts
that are located in the top-level directory of your IBM HPC Toolkit installation.
These setup scripts are located in the /opt/ibmhpc/ppedev.hpct directory. If you are
using sh, bash, ksh, or a similar shell command, invoke the env_sh script as .
env_sh. If you are using csh, invoke the env_csh script as source env_csh.

Using the hpccount command

The hpccount command is essentially used the same way as the time command; in
the simplest invocation, the user types:
hpccount program

If you are using the hpccount command to measure the performance of a parallel
program, you should invoke hpccount as poe hpccount program. If you invoke
hpccount as hpccount poe program, you will measure the performance of the poe
command, and not the performance of your application.

As a result, hpccount appends various performance information at the end of the
screen (in other words, to stdout). In particular, it prints resource usage statistics,
hardware performance counter information, and derived hardware metrics.

The resource usage statistics are directly taken from a call to getrusage(). For more
information on the resource usage statistics, refer to the getrusage man pages. In
particular, the Linux man page for getrusage() states that not all fields are
meaningful under Linux. The corresponding lines in hpccount output are not
provided.

© Copyright IBM Corp. 2008, 2015 75

If you specify the –l flag, the hpccount command displays a list of the hardware
performance counter groups that are available on the processor from which you
invoked the hpccount command.

If you specify the –g flag, you can specify the hardware performance counter
group from which you want to count events from. If you do not specify the –g
flag, the hpccount command uses a default hardware counter group (for more
information, see “hpccount - Report hardware performance counter statistics for an
application” on page 116). If you specify a comma-separated list of hardware
performance counter groups, hpccount multiplexes the use of the specified
hardware performance counter groups in your application process. See
“Understanding CPU hardware counter multiplexing” on page 78 for more
information.

You can obtain derived metric descriptions for your application by using the –x
flag. Derived metrics are additional performance metrics computed from the
hardware performance counter measurements you collected. See Appendix B,
“Derived metrics, events, and groups supported on POWER8 architecture,” on
page 203 for more information.

You can specify a data aggregation plug-in using the –a flag or the
HPM_AGGREGATE environment variable. See “Considerations for MPI
programs” on page 83 for more information.

Using the hpcstat command

The hpcstat is a simple system-wide monitor that is based on hardware
performance counters. To run hpcstat, root privileges are required. The usage is
very similar to that of the vmstat command. You can invoke hpcstat by issuing:
hpcstat

If you specify the –l flag, the hpcstat command displays a list of the hardware
performance counter groups that are available on the processor on which you
invoked the command.

If you specify the –g flag, you can specify the hardware performance counter
group from which you want to count events. If you do not specify the –g flag, the
hpcstat command will use a default hardware counter group as described in
“hpcstat - Reports a system-wide summary of hardware performance counter
statistics” on page 124.

You can invoke hpcstat so that it periodically queries the requested hardware
performance counter groups by using the -I flag to specify the number of times to
query hardware performance counter groups and using the -I flag to specify the
interval between queries.

The output of the hpcstat command is written to stdout and to a file, which
consists of hardware performance counter information and derived hardware
metrics.

76 High Performance Computing Toolkit: Installation and Usage Guide

Using the libhpc library

The hpccount command provides hardware performance counter information and
derived hardware metrics for the whole program. If this information is required for
only part of the program, instrumentation with the libhpc library is required. This
library provides a programming interface to start and stop performance counting
within an application program.

The libhpc library API includes the following function calls:
v hpmInit() for initializing the instrumentation library.
v hpmTerminate() for generating the reports and visualization data files and

shutting down the libhpc environment.
v hpmStart() for identifying the start of a region of code in which hardware

performance counter events will be counted.
v hpmStop() for identifying the end of the instrumented region.

The libhpc library provides variants of the hpmStart() and hpmStop() function
calls, which you can use in threaded code, and where you need to explicitly
identify parent/child relationships between nested instrumentation regions. libhpc
implements both C and FORTRAN versions of each function call.

The hpmStart() and hpmStop() function calls, or their variants, must be executed
in pairs, where for each hpmStart() function call, a corresponding hpmStop()
function call must be executed.

The part of the application program between the start and stop of performance
counting is called an instrumentation region. You assign a unique integer number
as the region identifier. You specify this region identifier in the call to the
hpmStart() function. A simple case of an instrumented program region might look
similar to the following:
hpmInit(0, “my program”);
hpmStart(1, “outer call”);
do_work();
hpmStart(2, “computing meaning of life”);
do_more_work();
hpmStop(2);
hpmStop(1);
hpmTerminate(0);

Calls to hpmInit() and hpmTerminate() surround the instrumented region. Every
instrumentation region starts with hpmStart() and ends with hpmStop(). The
region identifier is the first parameter to the latter two functions. As shown in the
example, libhpc supports multiple instrumentation regions and overlapping
instrumentation regions. Each instrumented region can also be called multiple
times. When hpmTerminate() is encountered, the counted values are collected and
printed or written to performance data files.

The example program above provides an example of two properly nested
instrumentation regions. For region 1 we can consider the exclusive time and
exclusive counter values. By that we mean the difference of the values for region 1
and region 2. The original values for region 1 would be called inclusive for matter
of distinction. The terms inclusive and exclusive for the embracing instrumentation
region are chosen to indicate whether counter values and times for the contained
regions are included or excluded. For more details see “Understanding inclusive
and exclusive event counts” on page 80.

Chapter 12. Using the hardware performance counter tools 77

Any C source file containing calls to any function contained in the libhpc library
should include the libhpc.h header. FORTRAN source files containing calls to
functions in the libhpc library should include the f_hpc.h header. Or, if the
FORTRAN source file is compiled using the –qintsize=8 compiler flag, it should
include the f_hpc_i8.h header file. All of these header files are located in the
${IHPCT_BASE}/include directory.

FORTRAN source files that include either the f_hpc.h or f_hpc_i8.h header file
should also be processed by the C pre-processor before compilation, for instance by
specifying the –qsuffix=cpp=f compiler flag. Another option is to use the .F
Fortran source file extension.

You must link your application with the libhpc library, using the –lhpc linking
option. You must also link your application with the libm library, using the –lm
linking option. When using the libhpc library, compile and link your application as
a threaded program (for instance, using the xlc_r or xlf_r commands), or link with
the pthreads library using the -lpthreads linking option. When linking libhpc with
your application, you must specify the correct library, using either the
–L${IHPCT_BASE}/lib or –L${IHPCT_BASE}/lib64 linking option.

A sample compilation and link is:
xlc -o testprog -g -q64 -I$IHPCT_BASE/include testprog.c -L$IHPCT_BASE/lib64 -lhpc

Like the hpccount command, you can obtain hardware performance counter
measurements using multiple hardware performance groups as described in
“Understanding CPU hardware counter multiplexing.” Derived metrics will be
computed if the events within the group you selected contain the events necessary
to compute the derived metric. If you are instrumenting an MPI program, you can
use plug-ins to aggregate performance data from multiple tasks or to filter that
data. See “Considerations for MPI programs” on page 83 for more detail about
these plug-ins.

Note that libhpc collects information and performs summarization during run
time. Thus, there could be a considerable overhead if instrumentation regions are
inserted inside inner loops. The libhpc library uses the same set of hardware
performance counter groups used by hpccount.

If an error occurs internally in libhpc, the program is not automatically terminated.
Instead, the libhpc library sets an error indicator and lets the user handle the error.
For details, see “hpm_error_count, f_hpm_error - Verify a call to a libhpc function”
on page 151.

Understanding CPU hardware counter multiplexing

The idea behind multiplexing is to run several CPU hardware counter groups
concurrently. This is accomplished by running the first CPU group for a short time
interval, then switching to the next CPU group for the next short time interval.
This is repeated in a round-robin fashion for the CPU groups until the event
counting is eventually stopped.

Hardware Performance Monitor (HPM) supports multiplexing by specifying CPU
groups as a comma separated list. If you are using the hpccount command, then
you can specify the multiplexed hardware performance CPU counter groups one of
two ways, for instance:
hpccount -g 1,2 program

78 High Performance Computing Toolkit: Installation and Usage Guide

or:
export HPM_EVENT_SET='1,2'
hpccount program

If you are running an application program that has been compiled and linked with
libhpc, specify the multiplexed CPU hardware counter groups by setting the
HPM_EVENT_SET environment variable before running your application. For
example:
export HPM_EVENT_SET='1,2'

Multiplexing means that none of the specified CPU groups has been run on the
whole code, and it is unknown what fraction of the code was measured with
which group. It is assumed that the workload is sufficiently uniform that the
measured event counts can be (more or less) safely calibrated as if the groups have
been run separately on the whole code.

On Linux, the kernel chooses the intervals used when multiple CPU groups are
specified.

The data for each CPU group is printed in a separate section, with separate timing
information, and is written separately to the visualization data files used as input
to the hpctView application.

For MPI applications, the form of the output depends on the chosen aggregation
plug-in as described in “Considerations for MPI programs” on page 83. Without
specifying an aggregator plug-in (in other words, with the default plug-in), the
data for each CPU hardware performance counter group is printed in a separate
section with separate timing information for each CPU hardware performance
counter group. To combine the data from the specified groups in to one big group
with more counters, use the local merge aggregator plug-in (loc_merge.so), which
is described in “Plug-ins shipped with the tool kit” on page 84.

Understanding derived metrics

Some of the hardware counter events are difficult to interpret. Sometimes a
combination of events provides better information. Such a combination of basic
events is called a derived metric. HPM provides a list of derived metrics, which
are defined in Appendix B, “Derived metrics, events, and groups supported on
POWER8 architecture,” on page 203.

Since each derived metric has its own set of ingredients, not all derived metrics are
printed for each group. HPM automatically finds those derived metrics that are
computable and prints them. As a convenience to the user, the -x flag will print the
value of the derived metric and its definition. If the HPM_PRINT_FORMULA
environment variable is set to yes, derived metric formulas are also printed.

Understanding MFlop issues

For POWER8 servers in Little Endian (LE) mode, scalar FLOPS and scalar
utilization rate are computed as derived metrics when the default hardware
counter group is selected. There is no hardware counter group that includes all
event counters for vector floating point operations, so a vector FLOPS rate cannot
be computed automatically. Use groups containing event counters
PM_VSU_1FLOP, PM_VSU_2FLOP, PM_VSU_4FLOP, PM_VSU_8FLOP,

Chapter 12. Using the hardware performance counter tools 79

PM_VSU_16FLOP and PM_VSU_2FLOP_DOUBLE to compute vector FLOPS. Note
that when computing vector FLOPS, you must multiply the event count by the
number in the counter name, for instance multiply PM_VSU_2FLOP by 2 to get the
correct count.

Understanding inheritance

On Linux, the counter virtualization and the group (in other words, set of events)
that is actually monitored is inherited from the process by any of its children.
Children in this context mean threads or processes spawned by the parent process.
Counter values are only available to the parent if the child has exited.

The hpccount utility makes use of this inheritance. If hpccount is called for a
program, the returned counter values are the sum of the counter values of the
program and all of the threads and processes spawned by it at the time the values
are collected. For Linux, this has to be restricted to the sum of counter values of all
children that have finished at the time the values are collected. Even the latter is
enough to catch the values of all threads of an OpenMP program.

Suppose you are using a small program named taskset to bind threads to CPUs.
When hpccount is invoked to run taskset as follows:
hpccount taskset -g num program_name

hpccount would first enable hardware event counting for the application taskset.
This command then spawns the program program name, which inherits all
hardware counter settings. At the end hpccount would print counter values (and
derived metrics) based on the sum of events for taskset and the called program.
Because taskset is a very small application, the hpccount results would mostly
represent the performance of the program program name, which is what the user
intended.

Understanding inclusive and exclusive event counts

For an example of an application fragment, where the term exclusive values applies,
see “Using the libhpc library” on page 77. That application fragment provides an
example of two properly nested instrumentation regions. For region 1, exclusive
time and exclusive counter values are the difference between the values for region
1 and region 2, or excluding the counts of events within the scope of region 2. The
original values for region 1 would be called inclusive values since those values
also include the count of events that occurred within the scope of region 2. The
terms inclusive and exclusive for the enclosing instrumentation region are chosen
to indicate whether counter values and times for the contained regions are
included or excluded.

The extra computation of exclusive values generates overhead that is not always
wanted. Therefore, the computation of exclusive values is only carried out if the
environment variable HPM_EXCLUSIVE_VALUES is set to yes or if the
HPM_ONLY_EXCLUSIVE parameter is used as described in “Understanding
parent-child relationships” on page 81. The exact definition of exclusive is based on
parent-child relationships among the instrumented regions. Roughly spoken, the
exclusive value for the parent is derived from the inclusive value of the parent
reduced by the inclusive value of all children.

80 High Performance Computing Toolkit: Installation and Usage Guide

Understanding parent-child relationships

The IBM HPC Toolkit provides an automatic search for parents, which is supposed
to closely mimic the behavior for strictly nested instrumented regions. For strictly
nested instrumented sections, the call to hpmStart() or hpmTstart() for the parent
must occur prior to the corresponding call for the child. In a multithreaded
environment, however, this causes problems if the children are executed on
different threads. In a kind of race condition, a child might mistake its brother for
its father. This generates flawed parent child relationships, which change with
every execution of the program. To avoid the race condition safely, the search for a
parent region is restricted to calls from the same thread only, because only these
exhibit a race condition free call history. The parent region found in this history is
the last call of the same kind (in other words, both were started with hpmStart() or
both were started with hpmTstart() or their corresponding FORTRAN equivalents)
that has not posted a matching hpmStop() or hpmTstop() meanwhile. If no parent
is found that matches these rules, the child is declared an orphan. Therefore,
automatic parent child relations are never established across different threads.

There might be situations in which the automatic parent child relations prove
unsatisfactory. To help this matter, calls are provided in the HPM API to enable
you to establish the relations of your choice. These functions are hpmStartx() and
hpmTstartx() and their FORTRAN equivalents. The first two parameters of this
function are the ID of the instrumented section and the ID of the parent
instrumented section.

The user has the following choices for the parent ID:

HPM_AUTO_PARENT
Triggers the automatic search and is equivalent to the hpmStart() and
hpmTstart() functions.

HPM_ONLY_EXCLUSIVE
This is essentially the same as HPM_AUTO_PARENT, but sets the exclusive
flag to true on this instance only. The environment variable
HPM_EXCLUSIVE_VALUES sets this flag globally for all instrumented
sections.

HPM_NO_PARENT
This suppresses any parent child relations.

An integer
This must be the ID of an instrumented section with the following restrictions:
v It has to be active when this call to hpmStartx() or hpmTstartx() is made.
v It has to be of the same kind (in other words, both were started with

hpmStart() or both were started with hpmTstart() or their corresponding
FORTRAN equivalents).

Handling of overlap issues

As you can establish almost arbitrary parent-child relationships, the definition of
the explicit duration or explicit counter values is not obvious.

Each instrumented section can be represented by the corresponding subset of the
time line of application execution. Actually this subset is a finite union of intervals
with the left or lower boundaries marked by calls to hpmStart[x]/hpmTstart[x]()
and the right or upper boundaries marked by calls to hpmStop()/hpmTstop(). The

Chapter 12. Using the hardware performance counter tools 81

duration is the accumulated length of this union of intervals. The counter values
are the number of those events that occur within this subset of time.

The exclusive times and values are the times and values when no child has a
concurrent instrumented section. Hence, the main step in defining the meaning of
exclusive values is defining the subset of the time line with which they are
associated. This is done in several steps:
v Represent the parent and every child by the corresponding subset of the time

line (henceforth called the parent set and the child sets).
v Take the union of the child sets.
v Reduce the parent set by the portion that is overlapping with this union.
v Take the difference of the parent set with the union of the child sets, using set

theoretic terms.

The exclusive duration is the accumulated length of the resulting union of
intervals. The exclusive counter values are the number of those events that occur
within this subset of time.

Understanding measurement overhead

Instrumentation overhead is caught by calls to the wall clock timer at entry and
exit of calls to hpmStart[x](), hpmStop(), hpmTstart[x](), hpmTstop(). The
accumulated instrumentation overhead for each instrumented section is printed in
the ASCII output (*.txt) file.

Based on the magnitude of the overhead, you can decide what to do with this
information.
v If the overhead is several orders of magnitude smaller than the total duration of

the instrumented section, you can safely ignore the overhead timing.
v If the overhead is the same order of magnitude as the total duration of the

instrumented section, the results might be inaccurate since the instrumentation
overhead is a large part of the collected event counts.

v If the overhead is within 20% of the measured wall clock time, a warning is
printed to the ASCII output file.

To make the use of libhpc thread safe, mutexes are set around each call to
hpmStart[x](), hpmStop(), hpmTstart[x](), hpmTstop(), which adds to the
measurement overhead. Results are unpredictable if your program is using
multiple threads and you set this environment variable.

Handling multithreaded program instrumentation issues

When placing instrumentation inside of parallel regions, you should use different
ID numbers for each thread, as shown in the following FORTRAN example:
!$OMP PARALLEL
!$OMP&PRIVATE (instID) instID = 30+omp_get_thread_num()
call f_hpmtstart(instID, "computing meaning of life")
!$OMP DO
do ...
do_work()
end do
call f_hpmtstop(instID)
!$OMP END PARALLEL

82 High Performance Computing Toolkit: Installation and Usage Guide

If two threads are using the same ID numbers when calling hpmTstart() or
hpmTstop(), libhpc exits with the following error message:
HPM ERROR - Instance ID on wrong thread

If you place instrumentation calls in parallel loops or parallel regions, use the
hpmTstart() and hpmTstop() function calls. If you use hpmStart() and hpmStop()
function calls, since application threads are not necessarily all executing the same
code, the event counts obtained by calls to hpmStart() and hpmStop() might not
be accurate.

Considerations for MPI programs
The follow topics discuss considerations for MPI programs.

General considerations

The libhpc library is inherently sequential, looking only at the hardware
performance counters of a single process (and its children, as explained in
“Understanding inheritance” on page 80). When the application is started, each
MPI task is doing its own hardware performance counting and these instances are
completely ignorant of each other, unless additional action is taken as described in
the following subtopics. Consequently, each instance is writing its own output. For
information about file naming conventions, see Appendix A, “Performance data file
naming,” on page 197.

For this reason, the environment variable HPM_AGGREGATE triggers some
aggregation before (possibly) restricting the output to a subset of MPI tasks. The
environment variable HPM_AGGREGATE takes a value, which is the name of a
plug-in that defines the aggregation strategy. Each plug-in is a shared object file
containing two functions called distributor and aggregator.

Hardware performance counter plug-ins
The following topics provide information about the hardware performance counter
plug-ins.

Note: Hardware performance counter plug-ins that use MPI calls are only
supported when linking your application with libhpc or instrumenting your
application with the hpctInst command. When using the hpccount command,
hardware performance counter plug-ins such as average.so and single.so that use
MPI calls are not supported.

Understanding distributor functions

The motivating example for the distributor function is allowing a different
hardware counter group on each MPI task. Therefore, the distributor is a
subroutine that determines the MPI task ID (or MPI rank within
MPI_COMM_WORLD) from the MPI environment for the current process, and
sets or resets environment variables depending on this information. The
environment variable can be any environment variable, not just the
HPM_EVENT_SET environment variable, which specifies the hardware
performance counter group.

The distributor function is called before any environment variable is evaluated by
HPM. The settings of the environment variables done in the distributor take
precedence over global environment variable settings.

Chapter 12. Using the hardware performance counter tools 83

The aggregator must adapt to the HPM group settings done by the distributor.
This is why distributors and aggregators always come in pairs. Each plug-in
contains a distributor and aggregator pair.

Understanding aggregator functions

The motivating example is the aggregation of the hardware performance counter
data across MPI tasks. In the simplest case, this could be an average of the
corresponding values. Hence this function is called:
v After the hardware performance counter data has been gathered
v Before the derived metrics are computed
v Before these data are printed

In general, the aggregator takes the raw results and rearranges them for output.

Also, depending on the MPI task rank the aggregator sets (or does not set) a flag
to mark the current MPI task for HPM printing.

Plug-ins shipped with the tool kit

The following plug-ins are shipped with the IBM HPC Toolkit. You can specify a
plug-in using the -a flag to the hpccount command or by using the
HPM_AGGREGATE environment variable.

Table 11. Plug-ins shipped with the tool kit

Plug-in name Description

mirror.so This plug-in is called when no plug-in is requested. The
aggregator mirrors the raw hardware performance counter data
in a one-to-one fashion to the output function. It also flags each
MPI task as a printing task. The corresponding distributor is an
empty function. This plug-in does not use MPI and also works in
a non-MPI context.

loc_merge.so This plug-in does a local merge on each MPI task separately. It is
identical to the mirror.so plug-in except for those MPI tasks that
change the hardware performance counter groups in the course
of the measurement (e.g. by multiplexing). The different counter
data, which are collected for only part of the measuring interval,
are proportionally extended to the whole interval and joined in
to one big group that is used for derived metrics computation.
This way, more derived metrics can be determined at the risk of
computing invalid metrics. The user is responsible for using this
plug-in only when it makes sense to use it. It also flags each MPI
task as a printing task. The corresponding distributor is an
empty function. This plug-in does not use MPI and also works in
a non-MPI context.

single.so This plug-in works the same as the mirror.so plug-in, but only
on MPI task 0. The output on all other tasks is discarded. This
plug-in uses MPI functions and cannot be used in a sequential
context.

84 High Performance Computing Toolkit: Installation and Usage Guide

Table 11. Plug-ins shipped with the tool kit (continued)

Plug-in name Description

average.so This plug-in calculates average values across MPI tasks. The
distributor reads the environment variable HPM_EVENT_SET
(which should be a comma-separated list of hardware
performance counter group numbers) and distributes these group
numbers in a round-robin fashion to the MPI tasks in the
application. You can control the cluster of groups assigned to
each task, by setting the environment variable
HPM_ROUND_ROBIN_CLUSTER to the number of groups
desired per task. The aggregator function creates an MPI
communicator of all tasks with equal hardware performance
counter group specifications. The communicator groups might be
different from the original round-robin distribution. This could
happen if the counting group has been changed on some of the
MPI tasks after the first setting by the distributor function. Next,
the aggregator computes the average for each hardware
performance counter event across the subgroups formed by this
communicator. Finally, it flags the MPI rank 0 in each group as a
printing host. This plug-in uses MPI functions and cannot be
used in a sequential context.

Why user-defined plug-ins are useful

This set of plug-ins is a starter kit and many more plug-ins might be desirable.
Rather than taking the average of hardware performance counters across a set of
MPI tasks, you could compute minimum or maximum values. You could also
create a kind of a history merge.so by blending in results from previous
measurements. You can write your own plug-ins using the interface described in
“Understanding the distributor and aggregator interfaces.”

The source code for the supplied plug-ins is provided for you to use as examples
in developing your own plug-ins. The source files and makefiles for the plug-ins
are located in the $IHPCT_BASE/examples/plugin directory.

Understanding the distributor and aggregator interfaces

Each distributor and aggregator is a function returning an integer which is equal to
zero on success and not equal to zero on error. In most cases the errors occur when
calling a system call like malloc(), which sets the errno variable. If the distributor
or aggregator returns the value of errno as the return code, the calling HPM tool
can use the errno to display a meaningful error message. If returning errno is not
viable, the function should return a negative value.

The function prototypes are defined in the ${IHPCT_BASE}/include/hpc_agg.h
header file:
#include "hpc_data.h"
int distributor(void);
int aggregator(int num_in, hpm_event_vector in,

int *num_out, hpm_event_vector *out,
int *is_print_task);

The distributor function has no parameters and is only required to set or reset
environment variables using setenv(), if necessary, for correct operation of the
aggregator function.

Chapter 12. Using the hardware performance counter tools 85

The aggregator function takes the current hardware performance counter values on
each task as an input vector in and returns the aggregated values on the output
vector out on selected or all MPI tasks. The aggregator is responsible for allocating
the memory needed to hold the output vector out. The definition of the data types
used for in and out are provided in the ${IHPCT_BASE}/include/hpc_data.h
header file.

Finally, the aggregator function must set (or reset) the flag, is_print_task to mark
the current MPI task for HPM printing.

The hpm_event_vector in is a vector or list of num_in entries of type
hpm_data_item. This data type is a struct containing members that describe the
definition and the results of a single hardware performance counting task.

The following is from the hpc_data.h include file:
/* NAME INDEX DESCRIPTION */

#define HPM_NTIM 8
#define HPM_TIME_WALLCLOCK 0 /* Wall clock time */
#define HPM_TIME_CYCLE 1 /* User time generated from ticks */
#define HPM_TIME_USER 2 /* User time as reported by rusage() */
#define HPM_TIME_SYSTEM 3 /* System time as reported by rusage() */
#define HPM_TIME_START 4 /* Start time stamp (volatile) */
#define HPM_TIME_STOP 5 /* Stop time stamp (volatile) */
#define HPM_TIME_OVERHEAD 6 /* Overhead time for counter start/stop */
#define HPM_TIME_INIT 7 /* Overhead time for initialization */

/*
* These defines will be set depending on the group type
* Each of the group types may have a different number of members
*/

#define HPM_GROUP_TYPE_UNSET (0)
#define HPM_GROUP_TYPE_CPU (1)
#define HPM_GROUP_TYPE_RUSAGE (4)

typedef struct {
int num_data; /* Number event info entries */
hpm_event_info *data; /* Event info list */
double times[HPM_NTIM]; /* Timing information */
int group_type; /* cpu, rusage */
int mpi_task_id; /* MPI task id if available */
int instr_id; /* id of the instrumented code */

/* section if applicable (-1 otherwise) */
int count; /* number of entries/exits to the */

/* instrumented section (if applicable) */
int is_exclusive; /* these are exclusive values */
int xml_element_id; /* arbitrary integer to identify */

/* hpm_data_items that translate into */
/* identical XML element shapes */

char *description; /* Description for this data item */
char *xml_descr; /* Descriptive header for XML output */

} hpm_data_item;

typedef hpm_data_item *hpm_event_vector;

v The first element of the vector contains the data from a call to getrusage(). This
vector element is the only element with its structure member group_type set to
HPM_GROUP_TYPE_RUSAGE to distinguish it from hardware performance
counter data.

v The count of events from an individual hardware performance counter group on
one MPI task is contained in a single element of type hpm_data_item.

86 High Performance Computing Toolkit: Installation and Usage Guide

v If multiplexing is used, the results span several consecutive elements, each
dedicated to one hardware performance counter group that takes part in the
multiplex setting. On all but the first element, the member is_mplex_cont is set
to true to indicate that these elements are continuations of the first element
belonging to the same multiplex setup.

v If hardware performance counter groups are changed during the measurement,
the results for different groups are recorded in different vector elements, but the
is_mplex_cont flag is not set. This way results obtained using multiplexing can
be distinguished from results obtained by an ordinary hardware performance
counter group change.

v If several instrumented sections are used, each instrumented code section uses
separate elements of type hpm_data_item to record the results. Each of these
elements will have the member instr_id set to the value of the first argument of
hpmStart() and the logical member is_exclusive set to true or false depending
on whether the element hold inclusive or exclusive counter results as described
in “Understanding inclusive and exclusive event counts” on page 80. Then all
these different elements are concatenated in to a single vector.

The output vector is of the same format. Each vector element is used in the
derived metrics computation separately (unless is rusage is equal to true). Then all
vector elements and the corresponding derived metrics are printed in the order
given by the vector out. The output of each vector element is preceded by the
string pointed to by structure member description (which might include line feeds,
as appropriate). The XML output will be labeled with the text pointed to by
xml_descr. This way the input vector in is providing a complete picture of what
has been measured on each MPI task. The output vector out is allowing complete
control on what is printed on which MPI task in what order.

Getting the plug-ins to work

The sample plug-ins are compiled with the Makefile ${IHPCT_BASE}/examples/
plugin/Makefile using the command:
gmake

Note the following considerations when implementing your own plug-in:
v The Makefile distinguishes sequential and parallel plug-ins. The latter are

compiled and linked with the MPI wrapper script for the compiler and linker.
Unlike a static library, generation of a shared object requires linking, not just
compilation.

v There are some restrictions to be observed when writing plug-in code.
– The MPI standard document disallows calling MPI_Init() twice in the same

process.
– The distributor function is called by hpmInit(). If the distributor function

contains MPI calls, the user’s application is required to call MPI Init() prior to
calling hpmInit(). To avoid this restriction, the distributor function must not
call any MPI function. The MPI task ID should be extracted by inspecting
environment variables, specifically the MP_CHILD environment variable, that
have been set by the MPI software stack.

– The aggregator function, however, usually cannot avoid calling MPI functions.
Before calling MPI_Init(), it has to check whether the instrumented
application has already done so, for example, by calling the MPI_Initialized()
function. If the instrumented application is an MPI application, the aggregator
function cannot be called after MPI_Finalize(). The aggregator function is

Chapter 12. Using the hardware performance counter tools 87

called by hpmTerminate(). Hence hpmTerminate() has to be called between
the calls to MPI Init() and MPI Finalize().

– libhpc uses a call to dlopen() to access the plug-in and makes use of its
functions.

88 High Performance Computing Toolkit: Installation and Usage Guide

Chapter 13. Using GPU hardware counters in HPCT

The IBM HPC Toolkit provides the capability for you to profile and trace GPU
hardware counters through the GPU Performance Monitoring (GPM) component.
The GPM component uses the CUPTI interface and the CUDA runtime and driver.
CUPTI is an extraneous component of CUDA and must be installed on the nodes
where the profiling is performed. Once installed, it is located in the
/usr/local/cuda/extras/CUPTI directory.

By using the CUPTI interface, the GPM's profiling and tracing is discrete to GPU
kernel executions. The events and metrics measured by GPM cover the entire
execution of a GPU kernel, which is viewed as a black box by GPM. In addition,
depending on what events and metrics are profiled or traced, the GPU kernels
might be executed multiple times in order to measure the counters for all the
events specified, or for the metrics specified.

The profiling and tracing of GPU hardware counters can be performed in three
ways by using:
v The preload GPM library, /opt/ibmhpc/ppedev.hpct/lib64/prelod/libgpm.so

v The GPM API exported by the GPM library, /opt/ibmhpc/ppedev.hpct/lib64/
libgpm.so

v GPM under the control of HPM

Regardless of which way the GPM component is used, the GPU events and metrics
are specified by using the environment variables, GPM_EVENT_SET and
GPM_METRIC_SET, respectively. The complete set of events and metrics
supported by a specific device or version of CUPTI is generated by the gpmlist
command (see “gpmlist - Lists the available events and metrics” on page 114).

You can specify the events and metrics as a comma-separated (no spaces) list using
either their names or the following format:
device:<device number>:<event/metric name>

where device number is the device where the events and metrics are profiled.

If only the event or metric name is specified, the profiling is performed for all
devices used by the application. The profiling or tracing of both events and metrics
at the same time is not supported. You must use either GPM_EVENT_SET or
GPM_METRIC_SET, but not both. GPM will display an error if both environment
variables are set at the same time.

The output files produced by the GPM component follows the general HPC
format:
<tool name>-<MPI world #>.<MPI task #>.<component name>.<application name>.<extension>

where:

tool name
Is hpct by default and it can be changed using the HPC_OUTPUT_NAME
environment variable.

MPI world # and MPI_task #
Are the MPI world and tasks numbers.

© Copyright IBM Corp. 2008, 2015 89

|

|

|
|
|
|
|
|

|
|
|
|
|
|

|
|

|

|
|

|

|
|
|
|
|

|
|

|

|

|
|
|
|
|

|
|
|

|

|
|
|

|
|

component name
Is gpm.

application name
Is the name or the user's application that is being profiled or traced.

extension
Can be either txt for ASCII files, viz for XML formatted files, or gpt for trace
directories.

In GPM, the error display is limited because the use of shared libraries makes it
impractical to display errors to stderr. You can view a log of the GPM activity
using the HPC Toolkit's log facility, by setting the HPCTLOG and HPC_TEMPDIR
environment variables to the level of logging desired (level 1 logs errors) and the
location of the generated log file, respectively. Each task in an MPI job produces a
log file, named as follows:
<user name>.<process id>.log

where:

user name
Is the name of the user.

process id
Is the process id of the task or process producing the log file.

When profiling or tracing GPU hardware counters, you can use either event or
metrics, but you cannot profile or trace both events and metrics at the same time.

The following topics describe the three modes of operation for GPM.

Using the GPM preload library

To use the GPM preload library, use the Linux LD_PRELOAD mechanism and set
the LD_PRELOAD environment variable as follows:
LD_PRELOAD=/opt/ibmhpc/ppedev.hpct/lib64/preload/libgpm.so:$LD_PRELOAD

The LD_PRELOAD environment variable can be set either in the poe command
line (before poe) or in a wrapper shell script that launches the user application.
The advantage of using it in a wrapper shell is that it avoids an unnecessary
initialization of the CUPTI and CUDA environment (poe does not use CUDA.)

The LULESH benchmarks of a wrapper shell script can be used to set the
LD_PRELOAD environment variable and invoke the parallel application as shown
in this example:
#!/bin/sh
LD_PRELOAD=/opt/ibmhpc/ppedev.hpct/lib64/preload/libgpm.so:$LD_PRELOAD
lulesh -s 100 -i 100

Then the wrapper shell script can be run with poe as follows:
$ MP_HOSTFILE=host.file MP_RESD=poe MP_PROCS=8 GPM_METRIC_SET=ipc poe lulesh.sh

When the GPM preload library is loaded by the dynamic linker, it:
1. Initializes the CUDA runtime environment
2. Reads the HPM_EVENT_SET or HPM_METRIC_SET environment variables
3. Sets up the appropriate CUPTI event groups or group sets
4. Starts the profiling or tracing of the GPU events and metrics

90 High Performance Computing Toolkit: Installation and Usage Guide

|
|

|
|

|
|
|

|
|
|
|
|
|

|

|

|
|

|
|

|
|

|

|

|
|

|

|
|
|
|

|
|
|

|
|
|

|

|

|

|

|

|

|

When the application finishes its execution, the GPM preload library stops the
GPU event or metric profiling and tracing and terminates the GPM runtime
environment. It is during this time that the output files or information is produced.

By default, the GPM preload library produces output to stdout and to an ASCII
file:
v The output produced to stdout consists of measurements produced for each

GPU kernel execution.
v The output produced in the ASCII file consists of cumulative measurements for

all the GPU kernel executions.

Setting GPM_STDOUT=n suppresses the output to stdout. Setting the
GPM_VIZ_OUTPUT=y produces an XML formatted output file equivalent to the
ASCII text file that can be viewed with the hpctView command or with the HPCT
plugin for Eclipse PTP.

If you want to generate trace files that can be visualized in the hpctView
application, set GPM ENABLE_TRACE=y. The trace files produced by the GPM
preload library are recorded in the OTF2 format. You can use the otf2-print
command in the /opt/ibmhpc/ppedev.hpct/bin directory to see the content of the
trace files. For example, if the trace subdirectory name in the local directory is
hpct_0.0.gpm.lulesh.gpt, then the trace file can be output to stdout as follows:
otf2-print hpct_0.0.gpm.lulesh.gpt/lulesh.otf2

Considering that all tasks produce output, the GPM preload library is suitable for
profiling and tracing small jobs. When using the GPM preload library, the entire
execution of the application is profiled and traced for GPU.

Using the GPM API

To gain more control of what portion of the program is profiled or traced, you can
use the GPM API, which does the following:
v Exports a minimal set of routines to initialize the GPM runtime
v Starts and stops the profiling for the entire process or for the current thread
v Terminates the GPM runtime and output results.

The following example shows how to use the GPM API with an small CUDA
program:
#include <gpm.h>
...
int rc = 0;
// initialize the GPM runtime
rc = gpm_init();
// handle error code
rc = gpm_start();
// handle error code

... // program execution

rc = gpm_stop();
// handle error code
rc = gpm_terminate();
//handle error code

To build your application with the GPM API, you need to add the GPM header
file path to the application's compile options and the GPM library path and name
to your application's link options, as follows:

Chapter 13. Using GPU hardware counters in HPCT 91

|
|
|

|
|

|
|

|
|

|
|
|
|

|
|
|
|
|
|

|

|
|
|

|

|
|

|

|

|

|
|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

|
|
|

-I/opt/ibmhpc/ppedev.hpct/include

and:
-L/opt/ibmhpc/ppedev.hpct/lib64 -lgpm

Use the GPM_EVENT_SET or GPM_METRIC_SET environment variables to
provide the set of events or metrics that you want to profile and trace.

By default, the GPM API does not produce output to stdout. If you want to have
output produced to stdout, use the GPM_STDOUT environment variable set to y
(GPM_STDOUT=y). The rest of the output controls are identical to those used for
the GPM preload library.

Considering that all tasks in the job produce output, the GPM API is suitable to
profile and trace small jobs.

Using GPM under the control of HPM

You can use HPCTs HPM component to drive the GPM component. In this mode,
the HPM component does the following:
v Initializes the GPM runtime during its own initialization
v Starts and stops GPM profiling during its own start and stop routines
v Terminates the GPM runtime and produces GPM profile and trace output during

its own termination

For more information about how to use the HPM component for profiling and
tracing, see Chapter 12, “Using the hardware performance counter tools,” on page
75.

In order to enable the GPM component when using HPM, you need to set the
HPM_ENABLE_GPM environment variable to y (HPM_ENABLE_GPM=y). In this
case, HPM calls the GPM API to drive the GPU event and metric profiling and
tracing. Consequently, the event or metric set that needs to be profiled and the
output generated by the GPM component are controlled in the same manner as
when using the GPM component.

The IBM HPCT HPM component can be used to drive the GPM component either
through its API or using binary instrumentation. For more information about how
to use HPCT binary instrumentation, see Chapter 16, “Instrumenting your
application using hpctInst,” on page 107.

Considering that HPM allows the use of plug-ins to filter results and significantly
reduce the number of tasks that produce output, you can use this mode to profile
and trace GPU events or metrics with larger applications. For more information
about how to use the HPM plug-ins, see Table 11 on page 84.

92 High Performance Computing Toolkit: Installation and Usage Guide

|

|

|

|
|

|
|
|
|

|
|

|

|
|

|

|

|
|

|
|
|

|
|
|
|
|
|

|
|
|
|

|
|
|
|

Part 5. The MPI and I/O profiling libraries

The topics in this part provide information about using the MPI and I/O profiling
libraries.

© Copyright IBM Corp. 2008, 2015 93

94 High Performance Computing Toolkit: Installation and Usage Guide

Chapter 14. Using the MPI profiling library

The MPI profiling library, libmpitrace, is a library that you can link with your MPI
application to profile the MPI function calls in your application, or to create a trace
of those MPI calls. When you link your application with this library, the library
intercepts the MPI calls in your application, using the Profiled MPI (PMPI)
interface defined by the MPI standard, and obtains the profiling and trace
information it needs. This library also provides a set of functions that you can use
to control how profiling and trace data is collected, as well as functions that you
can use to customize the trace data.

Although the libmpitrace library can be used in a threaded application, it does not
correctly record MPI trace events in an application in which MPI function calls are
made on multiple threads. You should use libmpitrace only in single threaded
applications or applications in which MPI function calls are made only on a single
thread.

You must ensure that several environment variables required by the IBM HPC
Toolkit are properly set before you use the MPI profiling library. In order to set
these environment variables, run one of the setup scripts that are located in the
top-level directory of your IBM HPC Toolkit installation. These setup scripts are
located in the /opt/ibmhpc/ppedev.hpct directory. If you are using sh, bash, ksh, or
a similar shell command, invoke the env_sh script as . env_sh. If you are using
csh, invoke the env_csh script as source env_csh.

Compiling and linking with libmpitrace

When you compile your application, you must use the –g compiler flag so that the
library can obtain the information it needs to map performance information back
to application source code. You might want to consider compiling your application
at lower optimization levels since compiler optimizations might affect the accuracy
of mapping MPI function calls back to source code and the accuracy of the
function call stack for an MPI function call.

Any C source file containing calls to functions in the libmpitrace library should
include the mpt.h header file, which is located in the ${IHPCT_BASE}/include
directory. All applications must link the libmpitrace library with the application
using the –lmpitrace linker flag. The libmpitrace library is located in
${IHPCT_BASE}/lib64 for 64-bit applications. Although it is not necessary for all
linkers, it is recommended that the link command parameters be ordered such that
the mpi program object files come first, before specifying the–lmpitrace linker flag.

In this release, only MPICH2 is supported and the ${IHPCT_BASE}/lib64/
libmpitrace.so library is linked to the MPICH2-based library.

After you link your application with the libmpitrace library, you can run your
application just as you normally would.

© Copyright IBM Corp. 2008, 2015 95

Controlling traced tasks

The libmpitrace library stores MPI trace events in memory for performance
reasons. By default, the number of MPI trace events that are recorded is limited to
30,000 events or less. Additional MPI trace events beyond this number are
discarded. You can override this default by setting the MAX_TRACE_EVENTS
environment variable to the maximum number of MPI trace events to be recorded.
Increasing this value means that additional memory will be used to store MPI trace
events and that additional memory usage might affect your application program.

By default, for scalability, profiling data files and MPI function call events are
generated for a maximum of four tasks in the application:
v Task 0
v The task with the minimum MPI communication time
v The task with the maximum MPI communication time
v The task with the median MPI communication time

If task 0 is the task with minimum, maximum, or median MPI communication
time, at most, output files will be generated for only three tasks. If you want
output to be generated for all MPI tasks, set the OUTPUT_ALL_RANKS
environment variable to yes before running the application.

By default, the libmpitrace library traces MPI tasks 0 through 255 (or less if the
application has fewer than 256 MPI tasks). If you need to see MPI traces from all
tasks, you must set the TRACE_ALL_TASKS environment to yes before running
the application. If you have an application with more than 256 MPI tasks, but you
do not want to see traces from all MPI tasks, you can set the
MAX_TRACE_RANK to the MPI task index of the highest numbered MPI task
that you want traced.

By default, when libmpitrace obtains the calling address for each MPI function
that is traced, it gets the address of the MPI function’s immediate caller. If MPI
functions are called from within another library, or deeply layered within your
application, you might want libmpitrace to obtain the MPI function caller’s
address from one or more layers higher in the function call stack. You can specify
how many levels to walk back in the function call stack by setting the
TRACEBACK_LEVEL environment level to the number of levels to walk, where 0
means to obtain the address where the MPI function was actually called.

If you do not need to override the MAX_TRACE_RANK environment variable
setting, you can set the MT_BASIC_TRACE environment variable to yes. If you
do this, the trace library will operate with lower overhead for each MPI function
call.

Additional trace controls

You can obtain additional control over MPI trace generation by using function calls
in the libmpitrace library. You can trace selected sections of your application by
bracketing areas of interest with calls to the MT_trace_start() and MT_trace_stop()
functions. In order to use these functions, you must set the TRACE_ALL_EVENTS
environment variable to no before running your application. When you start your
application, tracing is initially suspended. When your application invokes the
MT_trace_start() function, MPI trace event collection is resumed in the task where
MT_trace_start() was called. Tracing continues until the MT_stop_trace() function

96 High Performance Computing Toolkit: Installation and Usage Guide

is called. At that time, MPI trace event collection is suspended in the task that
called MT_trace_stop(). Tracing can be resumed again by a subsequent call to the
MT_trace_start() function.

The MT_trace_start() and MT_trace_stop() functions can be called from C
applications. FORTRAN applications can call the mt_trace_start() and
mt_trace_stop() functions.

You can control which MPI function calls are traced by implementing your own
version of the MT_trace_event() function. The C function prototype for this
function is:
int MT_trace_event(int id);

where:

id Is an enumeration identifying the specific MPI function that is being executed.
You should include the mpi_trace_ids.h header, located in the
${IHPCT_BASE}/include directory, when you implement this function.

Your implementation of MT_trace_event() must return 1 if the MPI trace event
should be recorded, and must return 0 if the MPI trace event should not be
recorded.

You can control which MPI tasks should have MPI trace events recorded by
implementing your own version of the MT_output_trace() function. The C function
prototype for this function is:
int MT_output_trace(int task);

where:

task
Is the MPI task ID of the task calling this function. Your implementation of this
function must return 1 if the MPI trace event is to be recorded and return 0 if
the MPI trace event is not to be recorded.

Customizing MPI profiling data

You can create customized MPI profiling data by implementing your own version
of the MT_output_text() function. The C function prototype for this function is:
int MT_output_text(void);

This function is called for each MPI task when that task calls MPI_Finalize(). If
you implement your own version of the MT_output_text() function, you are
responsible for generating all profiling data, in whatever format you require. You
might use any of the functions described in “Understanding MPI profiling utility
functions” on page 98 in your implementation of the MT_output_text() function.

Your implementation of this function should return 1 if it successfully completes
and return -1 if an error occurs in processing.

Chapter 14. Using the MPI profiling library 97

Understanding MPI profiling utility functions

The libmpitrace library provides a set of functions that you can use to obtain
information about the execution of your application. You can use these functions
when implementing your own versions of MT_trace_event(), MT_output_trace(),
MT_output_text(), or anywhere else, including your own application code where
they are useful.

There are several functions you can use to obtain information about types of MPI
functions called in your application, as described in Table 12:

Table 12. MPI profiling utility functions

Function Purpose

MT_get_mpi_counts Determines how many times an MPI function is called.

MT_get_mpi_bytes Determines the total number of bytes that are transferred
by all calls to a specific MPI function.

MT_get_mpi_time Determines the cumulative amount of time that is spent in
all calls to a specific MPI function.

MT_get_mpi_name Obtains the name of an MPI function, given the internal
ID that is used by the IBM HPC Toolkit to refer to this
MPI function.

MT_get_time Determines the elapsed time since MPI_Init() was called.

MT_get_elapsed_time Determines the elapsed time between calls to MPI_Init
and MPI_Finalize.

MT_get_tracebufferinfo Determines the size and current usage of the internal MPI
trace buffer that is used by the IBM HPC Toolkit.

MT_get_calleraddress Determines the address of the caller of a currently-active
MPI function.

MT_get_callerinfo Determines the source file and line number information
for an MPI function call, using the address that is obtained
by calling MT_get_calleraddress.

MT_get_environment Obtains information about the MPI execution environment.

MT_get_allresults Obtains statistical information about a specific MPI
function call.

All of these functions are documented in Chapter 18, “Application programming
interfaces,” on page 131.

Performance data file naming

By default, the libmpitrace library generates three sets of output files in the
current working directory. For more information, see Appendix A, “Performance
data file naming,” on page 197.

98 High Performance Computing Toolkit: Installation and Usage Guide

Chapter 15. Using the I/O profiling library

The topics that follow will provide information about using the I/O profiling
library.

Preparing your application
The IBM HPC Toolkit provides a library that you can use to profile I/O calls in
your application.

You must ensure that several environment variables required by the IBM HPC
Toolkit are properly set before you use the I/O profiling library. In order to set
these environment variables, run one of the setup scripts that are located in the
top-level directory of your installation. These setup scripts are located in the
/opt/ibmhpc/ppedev.hpct directory. If you are using sh, bash, ksh, or a similar
shell command, you should invoke the env_sh script as . env_sh. If you are using
csh, you should invoke the env_csh script as source env_csh.

In order to profile your application, if you are not instrumenting your application
using hpctInst, the hpctView application, or the HPC Toolkit Eclipse plug-in, you
must link your application with the libhpctkio library using the
–L$IHPCT_BASE/lib64 and –lhpctkio linking options.

You must also set the TKIO_ALTLIB environment variable to the path name of an
interface module used by the I/O profiling library before you invoke your
application. The TKIO_ALTLIB environment variable should be set to
$IHPCT_BASE/lib64/get_hpcmio_ptrs.so. Optionally, the I/O profiling library can
print messages when the interface module is loaded, and it can abort your
application if the interface module cannot be loaded.

In order for the I/O profiling library to display a message when the interface
module is loaded, you must append /print to the setting of the TKIO_ALTLIB
environment variable. In order for the IO profiling library to abort your application
if the interface module cannot be loaded, you must append /abort to the setting of
the TKIO_ALTLIB environment variable. You might specify one, both, or none of
these options.

Note: There are no spaces between the interface library path name and the
options. For instance, to load the interface library, display a message when the
interface library is loaded, and abort the application if the interface library cannot
be loaded, you would issue the following command:
export TKIO_ALTLIB=”$IHPCT_BASE/lib/get_hpcmio_ptrs.so/print/abort”

Setting I/O profiling environment variables

There are two environment variables that the I/O profiling library uses to
determine the files for which I/O profiling is to be performed and the data that
will be obtained by profiling. These environment variables should be set, as
needed, before you run your application.

© Copyright IBM Corp. 2008, 2015 99

The first environment variable is MIO_FILES, which specifies one or more sets of
file name and the profiling library options to be applied to that file, where the file
name might be a pattern or an actual path name.

The second environment variable is MIO_DEFAULTS, which specifies the I/O
profiling options to be applied to any file whose file name does not match any of
the file name patterns specified in the MIO_FILES environment variable. If
MIO_DEFAULTS is not set, no default actions are performed.

The file name that is specified in the MIO_FILES variable setting might be a
simple file name specification, which is used as-is, or it might contain wildcard
characters, where the allowed wildcard characters are:
v A single asterisk (*), which matches zero or more characters of a file name.
v A question mark (?), which matches a single character in a file name.
v Two asterisks (**), which match all remaining characters of a file name.

The I/O profiling library contains a set of modules that can be used to profile your
application and to tune I/O performance. Each module is associated with a set of
options. Options for a module are specified in a list, and are delimited by /
characters. If an option requires a string argument, that argument should be
enclosed in curly braces '{}', if the argument string contains a / character.

Multiple modules can be specified in the settings for both MIO_DEFAULTS and
MIO_FILES. For MIO_FILES, module specifications are delimited by a pipe (|)
character. For MIO_DEFAULTS, module specifications are delimited by commas
(,).

Multiple file names and file name patterns can be associated with a set of module
specifications in the MIO_FILES environment variable. Individual file names and
file name patterns are delimited by colon (:) characters. Module specifications
associated with a set of file names and file name patterns follow the set of file
names and file name patterns, and are enclosed in square brackets ([]).

As an example of the MIO_DEFAULTS environment variable setting, assume that
the default options for any file that does not match the file names or patterns
specified in the MIO_FILES environment variable are that the trace module is to
be used with the stats and mbytes options and that the pf module is also to be
used with the stats and mbytes options. The stats option output for both trace and
pf is written to a file with a subtype of miostats. For more information, see
Appendix A, “Performance data file naming,” on page 197. The setting of the
MIO_DEFAULTS environment variable would be:
export MIO_DEFAULTS="trace/stats=miostats/mbytes,pf/stats=miostats/mbytes"

As an example of using the MIO_FILES environment variable, assume you have a
program that does I/O to /tmp/testdata and some *.txt and *.dat files in your
current working directory. The following setting will cause /tmp/testdata to use the
trace module with the events option and files matching the patterns *.txt or *.dat
to use the trace module with the stats and events options. The setting of the
MIO_FILES environment variable would be:
export MIO_FILES="/tmp/testdata [trace/events={tmp_testdata}] \
*.txt : *.dat [trace/events={any_txt_or_dat}/stats={any_txt_or_dat}]"

After running the program the following performance data files will be created:

hpct.mio.tmp_testdata.iot
Contains the trace events for the /tmp/testdata file.

100 High Performance Computing Toolkit: Installation and Usage Guide

hpct.mio.txt
Contains the trace stats for the /tmp/testdata file.

hpct.mio.any_txt_or_dat.iot
Contains the trace events for the *.txt and *.dat files.

hpct.mio.any_txt_or_dat.txt
Contains the trace stats for the *.txt and *.dat files.

Specifying I/O profiling library module options

The following modules are available in the I/O profiling library:

Table 13. MIO analysis modules

Module Purpose

mio The interface to the user program.

pf A data prefetching module.

trace A statistics gathering module.

recov Analyzes failed I/O accesses and retries in case of failure.

The mio module has the following options:

Table 14. MIO module options

Option Purpose

mode= Override the file access mode in the open system call.

nomode Do not override the file access mode.

direct Set the O_DIRECT bit in the open system call.

nodirect Clear the O_DIRECT bit in the open system call.

The default option for the mio module is nomode.

The pf module has the following options:

Table 15. MIO pf module options

Option Purpose

norelease Do not free the global cache pages when the global cache file usage
count goes to zero.

The release and norelease options control what happens to a global
cache when the file usage count goes to zero. The default behavior is to
close and release the global cache. If a global cache is opened and closed
multiple times, there could be memory fragmentation issues at some
point. Using the norelease option keeps the global cache opened and
available, even if the file usage count goes to zero.

release Free the global cache pages when the global cache file usage count goes
to zero.

private Use a private cache. Only the file that opens the cache might use it.

global= Use global cache, where the number of global caches is specified as a
value between 0 and 255. The default is 1, which means that one global
cache is used.

asynchronous Use asynchronous calls to the child module.

Chapter 15. Using the I/O profiling library 101

Table 15. MIO pf module options (continued)

Option Purpose

synchronous Use synchronous calls to the child module.

noasynchronous Alias for synchronous

direct Use direct I/O.

nodirect Do not use direct I/O.

bytes Stats output is reported in units of bytes.

kbytes Stats is reported in output in units of 12 bytes.

mbytes Stats is reported in output in units of mbytes.

gbytes Stats is reported in output in units of gbytes.

tbytes Stats is reported in output in units of tbytes.

cache_size= The total size of the cache (in bytes), between the values of 0 and 1GB,
with a default value of 64 K.

page_size= The size of each cache page (in bytes), between the value of 4096 bytes
and 1GB, with a default value of 4096.

prefetch= The number of pages to prefetch, between 1 and 100, with a default of
1.

stride= Stride factor, in pages, between 1 and 1G pages, with a default value of
1.

stats= Output prefetch usage statistics to the specified file. The name, if
specified will be the subtype portion of the file name. For more
information, see Appendix A, “Performance data file naming,” on page
197.

nostats Do not output prefetch usage statistics.

inter Output intermediate prefetch usage statistics on kill –USR1.

nointer Do not output intermediate prefetch usage statistics.

retain Retain file data after close for subsequent reopen.

noretain Do not retain file data after close for subsequent reopen.

listio Use listio mechanism.

nolistio Do not use listio mechanism.

tag= String to prefix stats flow

notag Do not use prefix stats flow.

The default options for the pf module are:
/nodirect/stats/bytes/cache_size=64k/page_size=4k/
prefetch=1/asynchronous/global/release/stride=1/nolistio/notag

The trace module has the following options:

Table 16. MIO trace module options

Option Purpose

stats= Output trace statistics to the specified file name. The name, if specified
will be the subtype portion of the file name. For more information, see
Appendix A, “Performance data file naming,” on page 197.

nostats Do not output statistics on close.

102 High Performance Computing Toolkit: Installation and Usage Guide

Table 16. MIO trace module options (continued)

Option Purpose

events= Generate a binary events file. The name, if specified will be the subtype
portion of the file name. For more information, see Appendix A,
“Performance data file naming,” on page 197.

noevents Do not generate a binary events file.

bytes Output statistics in units of bytes.

kbytes Output statistics in units of kilobytes.

mbytes Output statistics in units of megabytes.

gbytes Output statistics in units of gigabytes.

tbytes Output statistics in units of terabytes.

inter Output intermediate trace usage statistics on kill –USR1.

nointer Do not output intermediate statistics.

xml= Generate the statistics file in a format that can be viewed using the
Eclipse plug-in or the hpctView application. The name, if specified will
be the subtype portion of the file name. For more information, see
Appendix A, “Performance data file naming,” on page 197.

The default options for the trace module are:
/stats/noevents/nointer/bytes

The recov module has the following options:

Table 17. MIO recov module options

Option Purpose

fullwrite All writes are expected to be full writes. If there is a write failure due to
insufficient space, the recov module retries the write.

partialwrite All writes are not expected to be full writes. If there is a write failure
due to insufficient space, there will be no retry.

stats= Output recov module statistics to the specified file name. The name, if
specified will be the subtype portion of the file name. For more
information, see Appendix A, “Performance data file naming,” on page
197.

nostats Do not output recov statistics on file close.

command= The system command to be issued on a write error.

open_command= The system command to be issued on open error resulting from a
connection that was refused.

retry= Number of times to retry, between 0 and 100, with a default of 1.

The default options for the recov module are:
partialwrite/retry=1

Chapter 15. Using the I/O profiling library 103

Running your application

The I/O profiling options of most interest when using the IBM HPC Toolkit are the
stats option, which specifies the name of the statistics file that contains data about
the I/O performance of your application, and the events option which specifies the
name of a trace file containing data that can be viewed within the hpctView
application.

After you have compiled and linked your application as described in “Preparing
your application” on page 99 and set the MIO_FILES and MIO_DEFAULTS
environment variables, as needed, then you can run your application.

After you run your application, you can view trace files generated by the I/O
profiling library using the hpctView application. You can add the HPCT plug-in to
the Eclipse IDE to enable options for viewing the MIO trace files.

Performance data file naming

The names of the output files generated by the I/O profiling tool are dependent on
the settings of options in the MIO_FILES or MIO_DEFAULTS environment
variables and whether the application is a serial program, a MPI program, which
does not use dynamic tasking, or a MPI program which uses dynamic tasking.

For information about how files are named, see Appendix A, “Performance data
file naming,” on page 197.

104 High Performance Computing Toolkit: Installation and Usage Guide

|
|
|

Part 6. Using the hpctInst command

The topics in this part provide information about how to instrument your
application using the hpctInst command.

© Copyright IBM Corp. 2008, 2015 105

106 High Performance Computing Toolkit: Installation and Usage Guide

Chapter 16. Instrumenting your application using hpctInst

In addition to modifying your application source code to contain calls to
instrumentation functions, you can use the hpctInst utility to instrument your
application without modifying your application source code. The hpctInst utility
creates a new copy of your application’s executable containing the instrumentation
that you specified using command-line flags to the hpctInst utility. You can
instrument your application with hpctInst to obtain performance measurements for
hardware performance counters, MPI profiling, OpenMP profiling, and I/O
profiling.

You must ensure that several environment variables required by the IBM HPC
Toolkit are properly set before you invoke hpctInst. To set these environment
variables, run one of the setup scripts that are located in the top-level directory of
your installation. These setup scripts are located in the /opt/ibmhpc/ppedev.hpct
directory. If you are using sh, bash, ksh, or a similar shell command, invoke the
env_sh script as . env_sh. If you are using csh, invoke the env_csh script as source
env_csh.

If you are going to instrument your application using hpctInst, you must compile
the application using the –g compiler flag so that hpctInst can find the line
number and symbol table information it needs to instrument the application. When
you link your application, you should not link it with any libraries from the IBM
HPC Toolkit. You must link your application using the -Wl,--hash-style=sysv
–emit-stub-syms flags.

Note: You must not compile your application with the -pg flag.

After you have instrumented your application, you should set any environment
variables that are required by the instrumentation you requested. All of the
environment variables described in the topics for hardware performance counters,
MPI profiling, and I/O profiling can be used, as needed, when running an
application instrumented with hpctInst. The exception is OpenMP profiling, in
which the environment variables are used only to control the insertion of
instrumentation when the hpctInst utility is run, and must be set before hpctInst is
run. The OpenMP-specific environment variables are only described in “hpctInst -
Instrument applications to obtain performance data” on page 128.

Note: If you instrument small, frequently-called functions, the instrumentation
overhead might be significant, and the accuracy of performance measurements
might be affected by this overhead.

Instrumenting your application for hardware performance counters

You can instrument your application to obtain hardware performance counter
information in the following ways:
v You can instrument the entry and exit points of every function in your

application by using the –dhpm option. When you do this, you obtain
performance data that includes hardware performance counter totals for each
function in your application. You can use this data to identify functions that
require tuning for improved performance.

© Copyright IBM Corp. 2008, 2015 107

v You can instrument your application to obtain hardware performance counter
performance data at specific locations (function call sites) in your application,
where a function is called, using the –dhpm_func_call option. If you use this
option, you will obtain hardware performance counter information for the
function called at the specified location. You can use this information to help
you identify how a function called from multiple locations in your application
performs from each individual location from which it is called.
You specify the set of function call sites in the file specified as a parameter to the
–dhpm_func_call option. You can specify locations to be instrumented such that
only function calls from specific functions are instrumented, or only function
calls within a specified region of source code. The following example shows a
file that specifies that calls to function sum from function compute and calls to
function distribute_data from source file main.c between lines 100 and 200 are
instrumented.
sum compute
distribute_data main.c 100 200

v You can instrument selected regions of your source code by using the
–dhpm_region option and specifying a file that contains a list of one or more
regions of code to be instrumented. Regions of code might overlap. If regions of
code overlap, then the considerations described in “Handling of overlap issues”
on page 81 apply. The following example shows a file that specifies that regions
of code between lines 1 and 100 of main.c and lines 100 to 300 of report.c are to
be instrumented.
main.c 1 100
report.c 100 300

Instrumenting your application for MPI profiling

You can instrument your application for MPI profiling in the following ways:
v You can instrument the entire application so that all MPI calls in the application

are traced by using the –dmpi option.
v You can instrument your application so that only specific MPI functions called

from specific functions in your application are instrumented by using the
–dmpi_func_call option. You specify the set of MPI function call sites in the file
specified as a parameter to the –dmpi_func_call option. You can specify
locations to be instrumented such that MPI function calls only from a specific
function in your application are instrumented or only MPI function calls within
a specified region of source code are instrumented. The following example
shows a file that specifies that calls to the MPI_Send() function from function
compute and calls to MPI_Recv() from source file main.c between lines 100 and
200 are instrumented:
MPI_Send compute
MPI_Recv main.c 100 200

v You can instrument selected regions of your source code in which all MPI
function calls within that region are instrumented by using the –dmpi_region
option and specifying a file that contains a list of one or more regions of code to
be instrumented. The following example shows a file that specifies that regions
of code between lines 1 and 100 of main.c and lines 100-300 of report.c are to be
instrumented:
main.c 1 100
report.c 100 300

108 High Performance Computing Toolkit: Installation and Usage Guide

Instrumenting your application for I/O profiling

You can instrument your entire application for I/O profiling by using the –dmio
option. You select the specific files that will have performance data obtained for
them by setting I/O profiling environment variables as specified in “Setting I/O
profiling environment variables” on page 99.

If you want to instrument only specific I/O function calls in your application, use
the Eclipse plug-in or the hpctView application to instrument your application.

Chapter 16. Instrumenting your application using hpctInst 109

110 High Performance Computing Toolkit: Installation and Usage Guide

Part 7. Command and API reference

The topics in this part provide information about the commands and APIs
associated with the following:
v Application launch
v Hardware performance monitoring
v MPI profiling and trace (MPI trace APIs)
v Application instrumentation
v Performance data visualization

See Table 18 on page 113 and Table 19 on page 131 for more information.

© Copyright IBM Corp. 2008, 2015 111

112 High Performance Computing Toolkit: Installation and Usage Guide

Chapter 17. Commands

Table 18 lists the commands and what they are used for:

Table 18. Commands

Used for: Command

Application launch “hpcrun - Launch a program to collect
profiling or trace data” on page 122

Hardware performance monitoring “gpmlist - Lists the available events and
metrics” on page 114

“hpccount - Report hardware performance
counter statistics for an application” on page
116

“hpcstat - Reports a system-wide summary
of hardware performance counter statistics”
on page 124

Application instrumentation “hpctInst - Instrument applications to obtain
performance data” on page 128

© Copyright IBM Corp. 2008, 2015 113

|
|

gpmlist - Lists the available events and metrics
Use the gpmlist command to list the events and metrics available for specified or
current NVIDIA GPU devices.

Syntax

gpmlist <-e> [-d <device model>] [-l]
gpmlist <-m> [-d <device model>] [-l]
gpmlist [-D] [-l]

Flags

-D Lists the GPU devices that are supported by this command for static
display of available events and metrics.

-d <device model>
Lists the events or metrics for the specified GPU device (if this option is
not provided, the command displays events and metrics for the GPU
devices found on the host, if any).

-e Lists all events available on the GPU devices.

-m Lists all metrics available on the GPU devices.

-l Valid only with the -D, -e, or -m flags, and it lists details about the GPU
device, events, or metrics, respectively.

-h Prints the help message.

Description

The gpmlist command lists the events and metrics available for a specific GPU
device or the current GPU device. The command is provided by the
ppedev.runtime package:

/opt/ibmhpc/ppedev.hpct/bin/gpmlist

The gpmlist command displays the list of events and metrics supported by a
specified NVIDIA GPU device or the current device(s) on the host.

When invoked with the -D flag, the gpmlist command lists all the devices whose
events and metrics can be displayed statically. The -l flag adds more detail about
the GPU devices, such as their long names.

When invoked with the -e flag, the gpmlist command lists the events available on
the device specified with the -d flag or the devices installed on the host. The -l flag
adds more details, such as the names of the events.

When invoked with the -m flag, the gpmlist command lists the metrics available
on the device specified with the -d flag or the devices installed on the host. The -l
flag adds more details, such as the name of the metrics and the list of the events
required for each metric.

Examples
1. To list the GPU devices available for a static listing of events and metrics, enter:

gpmlist -D -l

114 High Performance Computing Toolkit: Installation and Usage Guide

|

|
|

|

|
|
|

|

||
|

|
|
|
|

||

||

||
|

||

|

|
|
|

|

|
|

|
|
|

|
|
|

|
|
|
|

|

|

|

You should receive output similar to the following:
K40m - NVIDIA K40m (Tesla)

2. To list the events available for the K40m device, enter:
gpmlist -d K40m -e

You should receive output similar to the following:
Domain 0
2082 tex0_cache_sector_queries
2083 tex1_cache_sector_queries
2084 tex2_cache_sector_queries

3. To list the metrics available for the current device(s), together with additional
detail, enter:
gpmlist -m -l

You should receive output similar to the following:
Device 0 (Tesla K40m)

1201 device:0:l1_cache_global_hit_rate - L1 Global Hit Rate
2645 device:0:l1_global_load_hit - l1 global load hit
2646 device:0:l1_global_load_miss - l1 global load miss

1202 device:0:l1_cache_local_hit_rate - L1 Local Hit Rate
2641 device:0:l1_local_load_hit - l1 local load hit
2643 device:0:l1_local_store_hit - l1 local store hit
2642 device:0:l1_local_load_miss - l1 local load miss
2644 device:0:l1_local_store_miss - l1 local store miss

1203 device:0:sm_efficiency - Multiprocessor Activity
2629 device:0:active_cycles - active cycles
2193 device:0:elapsed_cycles_sm - elapsed_cycles_sm

...

Chapter 17. Commands 115

|

|

|

|

|

|
|
|
|

|
|

|

|

|
|
|
|
|
|
|
|
|
|
|
|
|

|

hpccount - Report hardware performance counter statistics for an
application

Use the hpccount command to report summary hardware performance counter
and resource usage statistics for an application.

Syntax

hpccount [-o name] [-u] [-n] [-x] [-g group[,group,...]] [-a plugin] program
hpccount [-h]
hpccount [-l]
hpccount [-L]
hpccount [-c]

Flags

-a Specifies the name of a plug-in that defines the HPM data aggregation
strategy. If the plug-in name contains a /, the name is treated as an
absolute or relative path name. If the name does not contain a /, the
plug-in is loaded following the rules for the dlopen() function call. The
plug-in is a shared object file that implements the distributor() and
aggregator() functions. See “Hardware performance counter plug-ins” on
page 83 for more information.

-c Lists the available counters and the hardware counter events that can be
counted by each counter.

-g group[,group,...]
A single value that specifies the hardware counter group to be used, or a
comma-delimited list of hardware counter groups to be multiplexed. If this
flag or the HPM_EVENT_SET environment variable is not set, a processor
specific default group is used. The default group for POWER8 is group
number 226, defined as follows:

PM_FPU0_FCONV
Convert instruction executed.

PM_FPU0_FEST
Estimate instruction executed.

PM_FPU0_FRSP
Round to single precision instruction executed.

PM_LSU_LDF
FPU loads only on LS2/LS3 ie LU0/LU1.

PM_RUN_INST_CMPL
Run_Instructions.

PM_RUN_CYC
Run_cycles.

Note: Only CPU hardware counter groups can be specified when running
this command.

-h Displays a usage message.

-l Lists the available hardware counter groups and the hardware counter
events that are counted by each group.

-L Lists the available hardware counter groups and the counters contained in

116 High Performance Computing Toolkit: Installation and Usage Guide

each group. The individual counter information will include a short name,
the hardware event ID and a short text description. This flag is only
available when running Linux.

-n Suppresses hpccount output to stdout.

-o name
Writes output to a file with the prefix of name.
v The file prefix name can be specified using option -o or using the

environment variable HPC_OUTPUT_NAME. The option takes
precedence if there are conflicting specifications. If not specified, the file
prefix is hpct.

v The name name is expanded into different file names:
– name.hpm.app.txt is the file name for ASCII output, which is a

one-to-one copy of the screen output.
– name.hpm.app.viz is the file name for the XML output. This file can be

viewed using the hpctView application or the HPCT plugin.
For more information about file naming conventions, see Appendix A,
“Performance data file naming,” on page 197.

v Which of these output files are generated is governed by the additional
environment variables, HPM_ASC_OUTPUT and HPM_VIZ_OUTPUT.
If neither of these are set, only the ASCII output is generated. If at least
one is set, the following rules apply:
– HPM_ASC_OUTPUT, if set to yes, triggers the ASCII output
– HPM_VIZ_OUTPUT, if set to yes, triggers the XML output

v Unless the -a option is chosen, there is one output for each MPI task.

-u Specifies that unique file names are used for generated ASCII and XML
output files. The unique file name flag can be specified using option -u or
using the environment variable HPC_UNIQUE_FILE_NAME. The option
takes precedence if there are conflicting specifications. Unique file names
are generated according to the following rules:
v For serial programs, a string _processId is appended to either the file

prefix if no directory path is specified, or to the directory path if one is
given.

v For MPI programs that do not use dynamic tasking, a string _0_taskRank
is appended to either the file prefix if no directory path is specified, or
to the directory path if one is given.

v For MPI programs that use dynamic tasking, a string _worldId_worldRank
is appended to either the file prefix if no directory path is specified, or
to the directory path if one is given.

For more information about file naming conventions, see Appendix A,
“Performance data file naming,” on page 197.

-x Displays formulas for derived metrics as part of the command output.

Description

The hpccount command provides comprehensive reports of events that are critical
to performance on IBM systems. HPM is able to gather the usual timing
information, as well as critical hardware performance metrics, such as the number
of misses on all cache levels, the number of floating point instructions executed,
and the number of instruction loads that cause TLB misses. These reports help the
algorithm designer or programmer identify and eliminate performance bottlenecks.

Chapter 17. Commands 117

|
|

The hpccount command invokes the target program and counts hardware
performance counter events generated by the target program. The hpccount
command reports this information after the target program completes.

If you are using the hpccount command to measure the performance of a parallel
program, you should invoke hpccount as poe hpccount program. If you invoke
hpccount as poe hpccount program, you will measure the performance of the poe
command, and not the performance of your application.

For information about file naming conventions, see Appendix A, “Performance
data file naming,” on page 197.

Environment variables

Event selection environment variables

HPM_EVENT_SET
A single value that specifies the hardware counter group to be used, or a
comma-delimited list of hardware counter groups to be multiplexed. If the
-g flag is not used and HPM_EVENT_SET is not set, a processor-specific
default group is used. The default group for POWER8 is group number
226, defined as follows:

PM_FPU0_FCONV
Convert instruction executed.

PM_FPU0_FEST
Estimate instruction executed.

PM_FPU0_FRSP
Round to single precision instruction executed.

PM_LSU_LDF
FPU loads only on LS2/LS3 ie LU0/LU1.

PM_RUN_INST_CMPL
Run_Instructions.

PM_RUN_CYC
Run_cycles.

Note: Only CPU hardware counter groups can be specified when running
this command.

HPM_COUNTING_MODE
Specifies the CPU mode where counting will occur. Set this to a comma
separated list of any combination of the following three possible values:
v user

Set to user to have user side events counted.
v kernel

Set to kernel to have kernel or system events counted.
v hypervisor

Set to hypervisor to have hypervisor events counted.

The default setting for hpccount is user.

118 High Performance Computing Toolkit: Installation and Usage Guide

Output control environment variables

HPM_ASC_OUTPUT
Determines whether or not to generate an ASCII output file. The output
file name is:
name.hpm.app.txt

where:

app
Is the name of the executable.

Valid values are yes or no. The default value for HPM_ASC_OUTPUT is
true, except if HPM_VIZ_OUTPUT has been set, in which case the default
value for HPM_ASC_OUTPUT is false.

HPC_OUTPUT_NAME
Specifies the name prefix of the output files:
name.hpm.app.txt

and
name.hpm.app.viz

The name.hpm.app.viz file can be viewed using the hpctView application or
the HPCT plugin. For more information about file naming conventions, see
Appendix A, “Performance data file naming,” on page 197.

HPM_PRINT_FORMULA
Set to yes to print the definitions of the derived metrics. Set to no to
suppress this output. The default is no.

HPM_STDOUT
Set to yes to write ASCII output to stdout. If HPM_STDOUT is set to no,
no output is written to stdout. The default is yes.

HPC_UNIQUE_FILE_NAME
Set to yes in order to generate unique file names for generated ASCII and
XML output files. Set to no to generate the file name exactly as specified
by HPC_OUTPUT_NAME. For more information about file naming
conventions, see Appendix A, “Performance data file naming,” on page
197.

HPM_VIZ_OUTPUT
Set to yes to generate an XML output file with the name:
name.hpm.app.viz

The default value for HPM_VIZ_OUTPUT is false. This file can be viewed
using the hpctView application or the HPCT plugin.

Plug-in specific environment variables

HPM_ROUND_ROBIN_CLUSTER
HPM_ROUND_ROBIN_CLUSTER allows setting the number of groups
distributed per task.

Without the environment variable HPM_ROUND_ROBIN_CLUSTER set,
the average.so plug-in will distribute the group numbers from
HPM_EVENT_SET in a round-robin fashion, one group to each of the MPI
tasks in the application.

Chapter 17. Commands 119

|
|
|

|
|

The default value for HPM_ROUND_ROBIN_CLUSTER is 1. The default
will be used if a value less than 1 is specified.

The number of groups spread out round robin-fashion to the tasks will be
limited to the first "number of tasks times the setting of
HPM_ROUND_ROBIN_CLUSTER" groups.

If a value greater than the number of groups in HPM_EVENT_SET is
specified, HPM_ROUND_ROBIN_CLUSTER will be set to the number of
groups specified in HPM_EVENT_SET.

It is possible that the number of groups does not distribute evenly to the
tasks. The first task will get at most HPM_ROUND_ROBIN_CLUSTER of
the groups in HPM_EVENT_SET. If there are more tasks and groups left,
the second task will get at most HPM_ROUND_ROBIN_CLUSTER of the
groups left in HPM_EVENT_SET and so on, until there are no groups
unused in HPM_EVENT_SET. After the groups in HPM_EVENT_SET
have been used once, and there are more tasks, the process will repeat
until there are no more tasks.

The environment variable HPM_ROUND_ROBIN_CLUSTER is
recognized only when the average.so aggregation plug-in is selected.

HPM_PRINT_TASK
Specifies the MPI task that has its results displayed. The default task
number is zero. This environment variable is recognized only when the
single.so aggregation plug-in is selected.

Miscellaneous environment variables

HPM_AGGREGATE
Specifies the name of a plug-in that defines the HPM data aggregation
strategy. If the plug-in name contains a /, the name is treated as an
absolute or relative path name. If the name does not contain a /, the
plug-in is loaded following the rules for the dlopen() function call. The
plug-in is a shared object file that implements the distributor() and
aggregator() functions. See“Hardware performance counter plug-ins” on
page 83 for more information.

IHPCT_BASE
Specifies the path name of the directory in which the IBM HPC Toolkit is
installed (/opt/ibmhpc/ppedev.hpct).

Files

name.hpm.app.txt
The ASCII output from the hpccount invocation. This is a copy of the
report displayed at the completion of hpccount execution.

name.hpm.app.viz
An XML output file containing hardware performance counter data from
hpccount execution. This file can be viewed using the hpctView
application or the HPCT plugin.

Examples
1. To list available counter groups for your processor, enter:

hpccount -l

2. To report floating point unit (FPU) instructions on pipes 0 and 1, enter:
hpccount –o stats –g 127 testprog

120 High Performance Computing Toolkit: Installation and Usage Guide

|
|
|

3. To report double precision vector instructions issued on pipes 0 and 1, enter:
poe hpccount –o stats –g 129 –u testprog

Chapter 17. Commands 121

hpcrun - Launch a program to collect profiling or trace data
Use the hpcrun command to launch a program and collect profiling or trace data
from a subset of application tasks based on timing criteria.

Syntax

hpcrun [--exmetric ELAPSED_TIME | CPU_TIME] [--excount num_tasks]
[--tracestore memory |mpi_fname, mio_fname] instrumented binary [args ...]
hpcrun --help

Flags

--exmetric [ELAPSED_TIME | CPU_TIME]
Is the metric to be used to determine which task's data to collect. Specify
ELAPSED_TIME to filter by elapsed (wall clock) time or CPU_TIME to
filter by CPU time used. The default is ELAPSED_TIME.

--excount num_tasks
Is the number of tasks to be collected for minimum and maximum value of
the metric specified by --exmetric. The default is 10 tasks.

--tracestore [memory |mpi_fname, mio_fname]
Specifies the mode for trace data collection. If memory is specified then
trace data is held in each application task's memory until MPI_Finalize is
called. If mpi_fname, mio_fname is specified, then this option specifies the
path names of intermediate files where trace data from MPI trace and/or
I/O trace are stored. The default is memory.

--help Displays a usage message.

Description

The hpcrun command is used to collect profiling and trace data from a subset of
application tasks based on the metric the user specifies and the number of tasks
that the user has selected for profiling and trace data collection. The hpcrun
command can be invoked from the HPC Toolkit Eclipse plug-in, the hpctView
application, or from the command line to run the application and collect
performance data from the subset of application tasks.

Collecting profiling and trace data for a subset of tasks reduces the system
resources required to process and store this data. It also reduces the volume of
data that you have to analyze to evaluate your application's performance.

The subset of tasks is determined by querying each task for either the elapsed time
or CPU time it consumed, depending on whether you specified the
ELAPSED_TIME metric or the CPU_TIME metric.

The number of tasks is determined by the value the user specified for the
--exmetric option. The hpcrun command will collect data for the number of tasks
you specified with times closest to the minimum and maximum values for the
metric you specified. Data will also be collected for tasks zero and the task closest
to the average for the metric you specified if those tasks are not in the subsets
closest to the minimum or maximum value of the metric you specified.

122 High Performance Computing Toolkit: Installation and Usage Guide

For example, if you specified --excount 4 then the hpcrun command will collect
data for the 4 tasks closest to the minimum metric value, the 4 tasks closest to the
maximum metric value, and tasks zero and the task closest to the average metric
value.

If you are collecting trace data, you have two options for handling that data. If you
specify --tracestore memory, then the trace data for each application task is stored
in that application's memory until MPI_Finalize is called. There is less processing
overhead when trace data is stored in each task's memory, but this requires
additional storage beyond what your application already uses.

For MPI trace, each traced MPI function call requires 52 bytes of memory. For I/O
trace, each traced I/O system call requires approximately 44 bytes of memory.

If tracing requires too much memory, you can specify the --tracestore option with
the mpi_fname, mio_fname parameters. If you specify this form of the --tracestore
option, then MPI and/or I/O trace data will be stored in the respective
user-specified temporary files where the pathname of the file is specified by the
mpi_fname parameter for MPI trace and by the mio_fname parameter for I/O
tracing.

Once trace processing is complete, hpcrun will process the temporary trace files to
generate the final trace files and delete the temporary files.

Environment variables

HPC_EXCEPTION_COUNT
Equivalent to the --excount option. The --excount option overrides this
environment variable.

HPC_EXCEPTION_METRIC
Equivalent to the --exmetric option. The --exmetric option overrides this
environment variable.

HPC_TRACE_STORE
Equivalent to the --tracestore option. The --tracestore option overrides this
environment variable.

HPC_TRACE_MAX_BUFFERS
Set this to a positive integer value that defines the number of in-memory
buffers that are used to store trace events. When the in-memory buffers are
full, a separate thread starts sending the data back to the home node. The
default value is 1. The values set by the environment variables
MAX_TRACE_EVENTS (see “Controlling traced tasks” on page 96) and
HPC_TRACE_MAX_BUFFERS buffers determine the maximum number of
trace events that can be captured when an applications has been launched
using hpcrun. The environment variable HPC_TRACE_MAX_BUFFERS
only has an effect when you are not using the memory option of
HPC_TRACE_STORE or --tracestore.

Miscellaneous environment variables

IHPCT_BASE
Specifies the path name of the directory in which the IBM HPC Toolkit is
installed (/opt/ibmhpc/ppedev.hpct).

Chapter 17. Commands 123

hpcstat - Reports a system-wide summary of hardware performance
counter statistics

Use the hpcstat command to report a system-wide summary of hardware
performance counter statistics.

Syntax

hpcstat [-o name [-n] [-x] [-k] [-u] [-I time] [-U time] [-C count] [-g group]
hpcstat [-h]
hpcstat [-l]
hpcstat [-L]
hpcstat [-c]

Flags

-c Lists the available counters and the hardware counter events that can be
counted by each counter.

-C count
Specifies the number of times hpcstat reports statistics. The default is 1.

-g group[,group,...]
A single value that specifies the hardware counter group to be used, or a
comma-delimited list of hardware counter groups to be multiplexed. If this
flag or the HPM_EVENT_SET environment variable is not set, a processor
specific default group is used. The default group for POWER8 is group
number 226, defined as follows:

PM_FPU0_FCONV
Convert instruction executed.

PM_FPU0_FEST
Estimate instruction executed.

PM_FPU0_FRSP
Round to single precision instruction executed.

PM_LSU_LDF
FPU loads only on LS2/LS3 ie LU0/LU1.

PM_RUN_INST_CMPL
Run_Instructions.

PM_RUN_CYC
Run_cycles.

Note: Only CPU hardware counter groups can be specified when running
this command.

-h Displays a usage message.

-I time Specifies the interval, in seconds, for reporting statistics. The default sleep
time is 10 seconds.

-k Specifies that only kernel side events are to be counted.

-l Lists the available hardware counter groups and the hardware counter
events that are counted by each group.

-L Lists the available hardware counter groups and the counters contained in

124 High Performance Computing Toolkit: Installation and Usage Guide

each group. The individual counter information will include a short name,
the hardware event ID and a short text description. This flag is only
available when running Linux.

-n Suppresses hpcstat output to stdout.

-o name
Writes output to a file with the prefix of name.
v The file prefix name can be specified using option -o or using the

environment variable HPC_OUTPUT_NAME. The option takes
precedence if there are conflicting specifications. The file prefix may
contain a directory path. If not specified, the file prefix is hpct.

v The name name is expanded into different file names:
– name.hpm.hpcstat.txt is the file name for ASCII output, which is a

one-to-one copy of the screen output.
– name.hpm.hpcstat.viz is the file name for the XML output. This file

can be viewed using the hpctView application or the HPCT plugin.
v Which of these output files are generated is governed by the additional

environment variables, HPM_ASC_OUTPUT and HPM_VIZ_OUTPUT.
If neither of these are set, only the ASCII output is generated. If at least
one is set, the following rules apply:
– HPM_ASC_OUTPUT, if set to yes, triggers the ASCII output
– HPM_VIZ_OUTPUT, if set to yes, triggers the XML output

-u Specifies that only user side events are to be counted.

-U time
Specifies the interval, in microseconds, for reporting statistics.

-x Displays formulas for derived metrics as part of the command output.

Description

The hpcstat tool reports system-wide hardware performance counter statistics and
derived hardware metrics to stdout or to a file. If the –C flag and either the –I or
–U flags are used, hpcstat reports hardware performance counter statistics on a
periodic basis, similar to the vmstat command.

The hpcstat command requires the user to have root privileges.

Environment variables

Event selection environment variables

HPM_EVENT_SET
A single value that specifies the hardware counter group to be used, or a
comma-delimited list of hardware counter groups to be multiplexed. If the
-g flag is not used and HPM_EVENT_SET is not set, a processor-specific
default group is used. The default group for POWER8 is group number
226, defined as follows:

PM_FPU0_FCONV
Convert instruction executed.

PM_FPU0_FEST
Estimate instruction executed.

PM_FPU0_FRSP
Round to single precision instruction executed.

Chapter 17. Commands 125

|
|

PM_LSU_LDF
FPU loads only on LS2/LS3 ie LU0/LU1.

PM_RUN_INST_CMPL
Run_Instructions.

PM_RUN_CYC
Run_cycles.

Note: Only CPU hardware counter groups can be specified when running
this command.

HPM_COUNTING_MODE
Specifies the CPU mode where counting will occur. Set this to a comma
separated list of any combination of the following three possible values:

user Set to user to have user side events counted.

kernel Set to kernel to have kernel or system events counted.

hypervisor
Set to hypervisor to have hypervisor events counted.

The default setting for hpcstat is user and kernel.

Output control environment variables

HPM_ASC_OUTPUT
Determines whether or not to generate an ASCII output file. The output
file name is:
name.hpm.hpcstat.txt

Valid values are yes or no. The default value for HPM_ASC_OUTPUT is
true, except if HPM_VIZ_OUTPUT has been set, in which case the default
value for HPM_ASC_OUTPUT is false.

HPC_OUTPUT_NAME
Specifies the name prefix of the output files:
name.hpm.hpcstat.txt

and
name.hpm.hpcstat.viz

The name.hpm.hpcstat.viz file can be viewed using the hpctView
application or the HPCT plugin. For more information about file naming
conventions, see Appendix A, “Performance data file naming,” on page
197.

HPM_PRINT_FORMULA
Set to yes to print the definitions of the derived metrics. Set to no to
suppress this output. The default is no.

HPM_STDOUT
Set to yes to write ASCII output to stdout. If HPM_STDOUT is set to no,
no output is written to stdout. The default is yes.

HPC_UNIQUE_FILE_NAME
Set to yes in order to generate unique file names for generated ASCII and
XML output files. Set to no to generate the file name exactly as specified
by HPC_OUTPUT_NAME. If HPC_UNIQUE_FILE_NAME is set to yes,
the following rules apply:

126 High Performance Computing Toolkit: Installation and Usage Guide

|
|
|
|

v For serial programs, a string _processId is appended to either the file
prefix if no directory path is specified, or to the directory path if one is
given.

v For MPI programs that do not use dynamic tasking, a string _0_taskRank
is appended to either the file prefix if no directory path is specified, or
to the directory path if one is given.

v For MPI programs that use dynamic tasking, a string
_worldID_worldRank is appended to either the file prefix if no directory
path is specified, or to the directory path if one is given.

HPM_VIZ_OUTPUT
Set to yes to generate an XML output file with the name:
name.hpm.hpcstat.viz

The default value for HPM_VIZ_OUTPUT is false. This file can be viewed
using the hpctView application or the HPCT plugin.

Miscellaneous environment variables

IHPCT_BASE
Specifies the path name of the directory in which the IBM HPC Toolkit is
installed (/opt/ibmhpc/ppedev.hpct).

Files

name.hpm.hpcstat.txt
The ASCII output from the hpcstat invocation. This is a copy of the report
displayed at the completion of hpcstat execution.

name.hpm.hpcstat.viz
An XML output file containing hardware performance counter data from
hpcstat execution. This file can be viewed using the hpctView application
or the HPCT plugin.

Examples
1. To list hardware performance counter groups available on your processor,

enter:
hpcstat -l

2. To report floating point unit (FPU) instructions on pipes 0 and 1 for the system
every 30 seconds for five minutes on POWER8 servers, enter:
hpcstat –u –C 10 –I 30 –g 127

Chapter 17. Commands 127

|
|

|
|

hpctInst - Instrument applications to obtain performance data
Use the hpctInst command to instrument applications in order to obtain
performance data.

Syntax

hpctInst [-dhpm] [-dhpm_func_call file name] [-dhpm_region file name]
[-dmpi] [-dmpi_func_call file name] [-dmpi_region file name]
[-dmio] [-dpomp_parallel{none| EnterExit| BeginEnd}]
[-dpomp_user{none | BeginEnd}] [-dpomp_userfunc file name]
[-dpomp_loop{none| EnterExit | Chunks}]
[-dlink args] binary
[-h | --help]

Note: This command applies only to Power Architecture.

Flags

-dhpm
Instrument all function entry and exit points with HPM instrumentation.

-dhpm_func_call file name
Instrument function call sites with HPM instrumentation, as specified by
the contents of file name.

-dhpm_region file name
Instrument regions of code with HPM instrumentation, as specified by the
contents of file name.

-dmpi
Instrument all MPI calls in the application with MPI profiling
instrumentation.

-dmpi_func_call file name
Instrument MPI calls in functions at locations in the application, as
specified by file name.

-dmpi_region file name
Instrument MPI calls in regions of code in the application, as specified by
file name.

-dmio
Instrument all I/O calls in the application for I/O profiling.

-dpomp
Instrument all OpenMP parallel loop and parallel region constructs in the
application for OpenMP profiling.

-dpomp_loop {none | EnterExit | Chunks}
Instrument parallel loops for OpenMP profiling.

-dpomp_parallel {none | EnterExit | BeginEnd}
Instrument parallel regions for OpenMP profiling.

-dpomp_user {none | BeginEnd}
Instrument user functions for OpenMP profiling.

-dpomp_userfunc file name
Instrument the user functions specified in file name for OpenMP profiling.

128 High Performance Computing Toolkit: Installation and Usage Guide

-h
--help Display an hpctInst usage message.

Description

The hpctInst command is used to rewrite an application with instrumentation as
specified by command line flags and environment variables. The instrumented
binary is written to a file called binary.inst in the current working directory. After
an instrumented application has been created, set the appropriate environment
variables for the instrumentation you have requested, then run the application.

If you invoke hpctInst with the -dhpm_func_call or the -dmpi_func_call flag, the
format of each line in the file specified by file name is one of:
called_func[inst_function]
called_func [file_name [start_line [end_line]]]

where:

called_func
Is the name of the function being called. For the -dmpi_func_call option,
called_func is the name of an MPI function.

inst_function
Is the name of the only function in which calls to called_func are
instrumented.

file_name
Is the name of the only source file in which calls to called_func are
instrumented.

start_line
Is the first line number in file name in which calls to called_func are
instrumented.

end_line
Is the ending line number in file name in which calls to called_func are
instrumented.

If file_name is specified, and both start_line and end_line are omitted, all calls to
called_func in file_name are instrumented. The same called_func might be specified in
one or more lines in this file.

If you invoke hpctInst with the -dhpm_region or -dmpi_region flags, the format
of the each line in the file specified by file_name is:
file_name start_line end_line

where:

file_name
Is the name of the source file.

start_line
Is the starting line number in file_name that will be instrumented.

end_line
Is the ending line number in file_name that will be instrumented.

The meanings of the OpenMP instrumentation flags, -dpomp_*, are:

none No data is collected for this construct.

Chapter 17. Commands 129

EnterExit
Data is collected for parallel region entry and exit and for loop entry and
exit.

BeginEnd
Data is collected at begin and end of a parallel region. EnterExit data is
also collected.

Chunks
Data is collected for each parallel execution of the region or loop.

If your application does not reside in a global file system, copy the instrumented
binary to all nodes on which it will run. If you instrument an application for HPM,
hpctInst creates a file named .psigma.hpmhandle in the same directory as the
instrumented binary. If you instrument an application for OpenMP profiling,
hpctInst creates a file named .psigma.dpomphandle in the same directory as the
instrumented binary. You must ensure these files are accessible in the current
working directory on all nodes on which the instrumented application will execute.

The application being instrumented must be compiled with the -g flag. In addition,
the application must also be linked with these flags:
-Wl,--hash-style=sysv -emit-stub-syms

Environment variables

IHPCT_BASE
Specifies the path name of the directory in which the IBM HPC Toolkit is
installed (/opt/ibmhpc/ppedev.hpct).

LD_LIBRARY_PATH
Must be set to $IHPCT_BASE/lib64.

POMP_LOOP
Specifies the level of OpenMP profiling instrumentation for OpenMP
parallel regions. Values can be none, EnterExit, or Chunks. The
–dpomp_loop flag overrides this environment variable.

POMP_PARALLEL
Specifies the level of OpenMP profiling instrumentation for OpenMP
parallel regions. Values can be none, EnterExit, or BeginEnd. The
–dpomp_parallel flag overrides this environment variable.

POMP_USER
Specifies the level of OpenMP profiling for user functions. Values might be
none or EnterExit. The –dpomp_user flag overrides this environment
variable.

Examples
1. To instrument all MPI calls in an application, enter:

hpctInst –dmpi testprog

2. To instrument call sites for function testfunc from file main.c lines 1 through
100 with HPM instrumentation, enter:
hpctInst –dhpm_func_call inst_spec testprog

where the inst_spec file contains the single line:
testfunc main.c 1 100

3. To instrument all parallel loops and parallel regions in an OpenMP application
with EnterExit instrumentation, enter:
hpctInst –dpomp_loop –dpomp_parallel testprog

130 High Performance Computing Toolkit: Installation and Usage Guide

Chapter 18. Application programming interfaces

Table 19 lists the application programming interfaces (APIs) and what they are
used for:

Table 19. APIs

Used for: API

Hardware performance monitoring v “gpm_init - Initialize the GPU
Performance Monitor runtime
environment” on page 133

v “gpm_start - Identify the starting point of
an instrumented region of code” on page
136

v “gpm_stop - Identify the end point of an
instrumented region of code” on page 139

v “gpm_terminate - Generate GPU
Performance Monitoring statistics and
trace files and shut down the GPM
runtime environment” on page 142

v “gpm_Tstart - Identify the starting point
of an instrumented region of code” on
page 145

v “gpm_Tstop - Identify the end point of an
instrumented region of code” on page 148

v “hpm_error_count, f_hpm_error - Verify a
call to a libhpc function” on page 151

v “hpmInit, f_hpminit - Initialize the
Hardware Performance Monitor (HPM)
run-time environment” on page 153

v “hpmTstart, f_hpmtstart - Identify the
starting point for an instrumented region
of code” on page 167

v “hpmStartx, f_hpmstartx - Identify the
starting point for an instrumented region
of code” on page 160

v “hpmStop, f_hpmstop - Identify the end
point of an instrumented region of code”
on page 163

v “hpmTerminate, f_hpmterminate -
Generate HPM statistic files and shut
down HPM” on page 165

v “hpmTstart, f_hpmtstart - Identify the
starting point for an instrumented region
of code” on page 167

v “hpmTstartx, f_hpmtstartx - Identify the
starting point for an instrumented region
of code” on page 169

v “hpmTstop, f_hpmtstop - Identify the end
point of an instrumented region of code”
on page 172

© Copyright IBM Corp. 2008, 2015 131

|
|
|

|
|
|

|
|

|
|
|
|

|
|
|

|
|

Table 19. APIs (continued)

Used for: API

MPI profiling customization v “MT_get_allresults - Obtain statistical
results” on page 174

v “MT_get_calleraddress - Obtain the
address of the caller of an MPI function”
on page 177

v “MT_get_callerinfo - Obtain source code
information” on page 178

v “MT_get_elapsed_time - Obtains elapsed
time” on page 180

v “MT_get_environment - Returns run-time
environment information” on page 181

v “MT_get_mpi_bytes - Obtain the
accumulated number of bytes transferred”
on page 182

v “MT_get_mpi_counts - Obtain the the
number of times a function was called”
on page 183

v “MT_get_mpi_name - Returns the name
of the specified MPI function” on page
184

v “MT_get_mpi_time - Obtain elapsed time”
on page 185

v “MT_get_time - Get the elapsed time” on
page 186

v “MT_get_tracebufferinfo - Obtain
information about MPI trace buffer usage”
on page 187

v “MT_output_text - Generate performance
statistics” on page 188

v “MT_output_trace - Control whether an
MPI trace file is created” on page 189

v “MT_trace_event - Control whether an
MPI trace event is generated” on page 190

v “MT_trace_start, mt_trace_start - Start or
resume the collection of trace events” on
page 192

v “MT_trace_stop, mt_trace_stop - Suspend
the collection of trace events” on page 194

132 High Performance Computing Toolkit: Installation and Usage Guide

gpm_init - Initialize the GPU Performance Monitor runtime environment
Use gpm_init to initialize the GPU Performance Monitor (GPM) runtime
environment.

Library

libgpm.so (-lgpm)

C syntax
#include <gpm.h>
int gpm_init(void)

FORTRAN syntax
INCLUDE "h_gpm.inc"
INTEGER FUNCTION gpm_init()

Parameters

None.

Description

The gpm_init() function initializes the runtime environment of GPM for obtaining
GPU hardware performance counter statistics and trace information. Applications
must call this function before calling any other GPM functions.

During the initialization of the GPM runtime environment, this routine reads the
set of GPU events or metrics that will be profiled by GPM. These events or metrics
are specified with the GPM_EVENT_SET and GPM_METRIC_SET environment
variables, respectively.

The include files shown in the syntax are located in the ${IHPCT_BASE}/include
directory.

Returns

Upon successful completion, gpm_init returns GPM_OK and initializes the GPM
runtime environment.

If an error occurs, gpm_init returns one of the following:

GPM_ENOSTATIC
The application is statically linked to libc.

GPM_ENOLIBS
One of the CUDA or CUPTI libraries is not found.

GPM_ECUDA
An error occurred in the CUDA runtime library.

GPM_ECUPTI
An error occurred in the CUPTI library.

GPM_ENODEV
Unable to detect any GPU device.

GPM_ENOMEM
Memory allocation failure.

Chapter 18. Application programming interfaces 133

|

|
|

|

|

|

|
|

|

|
|

|

|

|

|
|
|

|
|
|
|

|
|

|

|
|

|

|
|

|
|

|
|

|
|

|
|

|
|

GPM_EMISC
Pthread related or other errors.

More information about the error can be obtained from the PE DE log file. For
information about how to generate a log file, see Chapter 5, “Generating a log file,”
on page 21.

Environment variables

GPM_EVENT_SET
Specifies a comma-separated (no spaces) list of events to be measured.
Events supported by the GPU devices can be listed with the gpmlist -e
command.

Events to be profiled can be specified in two ways:
1. For all GPU devices
2. For a specific GPU device

Events to be profiled for all devices are specified using their name. Events
to be profiled for specific devices are specified using the following syntax:
device:<device number>:<event name>

For example, to profile inst_executed on all GPU devices and
threads_launched on GPU device 1, set GPM_EVENT_SET to the
following:
GPM_EVENT_SET=inst_executed,device:1:threads_launched

GPM_METRIC_SET
Specifies a comma-separated (no spaces) list of metrics to be measured.
Metrics supported by the GPU devices can be listed with the gpmlist -m
command.

Note: Metrics specification follows the same syntax as for events.

IHPCT_BASE
Specifies the path name of the directory where the IBM HPC Toolkit is
installed (/opt/ibmhpc/ppedev.hpct).

Example
#include <gpm.h>
int main(int argc, char **argv)
{
int rc = 0;
...
rc = gpm_init();
if (0 != rc) {
/* process error code */
...

}

...

rc = gpm_terminate();
if (0 != rc) {
/* process error code */
...

}
}

PROGRAM gpmtest
INCLUDE "f_gpm.inc"

134 High Performance Computing Toolkit: Installation and Usage Guide

|
|

|
|
|

|

|
|
|
|

|

|

|

|
|

|

|
|
|

|

|
|
|
|

|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

RC = gpm_init()
if (RC != 0)
! process return code

...

RC = gpm_terminate()
if (RC != 0)
! process return code

END PROGRAM

Chapter 18. Application programming interfaces 135

|
|
|
|
|
|
|
|
|
|
|
|

gpm_start - Identify the starting point of an instrumented region of
code

Use gpm_start to identify the starting point of an instrumented region of code for
which GPU hardware performance counter events and metrics are to be counted.

Library

libgpm.so (-lgpm)

C syntax
#include <gpm.h>
int gpm_start(void)

FORTRAN syntax
INCLUDE "h_gpm.inc"
INTEGER FUNCTION gpm_start()

Parameters

None.

Description

The gpm_start() function identifies a region of code in which GPU hardware
performance counter events are to be counted. The end of the region is identified
by a call to the gpm_stop() function.

The region of the code identified by calls to gpm_start() and gpm_stop() functions
must be in code that runs on the CPU and not on the GPU. The effect of this call is
to enable CUPTI callbacks used for counting the specified GPU hardware counter
events and metrics. When enabled, the CUPTI callbacks will always remain
enabled for the entire execution of any CUDA kernels.

In multithreaded applications, the counting of GPU hardware counters is
performed for all GPU kernels launched from all POSIX threads in the process. If
you need to measure GPU hardware counter events for GPU kernels launched
from specific POSIX threads, use the gpm_Tstart() and gpm_Tstop() functions.

The gpm_start() and gpm_stop() functions must be called in pairs. Nesting of the
instrumented code regions has no effect on the counting of the GPU hardware
counting events.

The include files shown in the syntax are located in the ${IHPCT_BASE}/include
directory.

For a complete list of environment variables used by this function, see Appendix C,
“HPC Toolkit environment variables,” on page 271.

Returns

Upon successful completion, gpm_start returns 0.

If an error occurs, gpm_start returns the following:

136 High Performance Computing Toolkit: Installation and Usage Guide

|

|

|
|

|

|

|

|
|

|

|
|

|

|

|

|
|
|

|
|
|
|
|

|
|
|
|

|
|
|

|
|

|
|

|

|

|

GPM_EMISC
Improper use of gpm_start and gpm_stop pairing.

Environment variables

IHPCT_BASE
Specifies the path name of the directory where the IBM HPC Toolkit is
installed (/opt/ibmhpc/ppedev.hpct).

Example
#include <gpm.h>
int main(int argc, char **argv)
{

int rc = 0;

...

rc = gpm_init();
if (0 != rc) {

/* process error code */

...
}

/* start counting GPM hardware counter events */
rc = gpm_start();
if (0 != rc) {

/* process error code here */
...

}

...

/* stop counting GPM hardware counter events */
rc = gpm_stop();
if (0 != rc) {

/* process error code here */
...

}

rc = gpm_terminate();
if (0 != rc) {

/* process error code */
...

}
}

PROGRAM gpmtest
INCLUDE "f_gpm.inc"

RC = gpm_init()
if (RC != 0)
! process return code

...
RC = gpm_start()
if (RC != 0)
! process return code

...

...

RC = gpm_stop()
if (RC != 0)

Chapter 18. Application programming interfaces 137

|
|

|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

! process return code
...

RC = gpm_terminate()
if (RC != 0)
! process return code

...

END PROGRAM

138 High Performance Computing Toolkit: Installation and Usage Guide

|
|
|
|
|
|
|
|
|

gpm_stop - Identify the end point of an instrumented region of code
Use gpm_stop to identify the end point of an instrumented region of code for
which GPU hardware performance counter events and metrics are to be counted.

Library

libgpm.so (-lgpm)

C syntax
#include <gpm.h>
int gpm_stop(void)

FORTRAN syntax
INCLUDE "h_gpm.inc"
INTEGER FUNCTION gpm_stop()

Parameters

None.

Description

The gpm_stop() function identifies the end of a region of code in which GPU
hardware performance counter events are to be counted. The beginning of the
instrumented region of code is identified by a call to the gpm_start() function.

The gpm_start() and gpm_stop() routines must be called in pairs. Nesting the
instrumented regions has no effect on how the GPU hardware counter events and
metrics are counted.

The region of the code identified by calls to the gpm_start() and gpm_stop()
functions must be in code that runs on the CPU and not on the GPU. The effect of
this call is to disable the CUPTI callbacks used for counting the specified GPU
hardware counter events and metrics. When enabled, the CUPTI callbacks will
always remain enabled for the entire execution of any CUDA kernels.

In multithreaded applications, the counting of GPU hardware counters is
performed for all GPU kernels launched from all POSIX threads in the process. If
you need to measure GPU hardware counter events for GPU kernels launched
from specific POSIX threads, use the gpm_Tstart() and gpm_Tstop() functions.

The include files shown in the syntax are located in the ${IHPCT_BASE}/include
directory.

For a complete list of environment variables used by this function, see Appendix C,
“HPC Toolkit environment variables,” on page 271.

Returns

Upon successful completion, gpm_stop returns 0.

If an error occurs, gpm_stop returns the following:

GPM_EMISC
Improper use of the gpm_start() and gpm_stop() pairing.

Chapter 18. Application programming interfaces 139

|

|
|

|

|

|

|
|

|

|
|

|

|

|

|
|
|

|
|
|

|
|
|
|
|

|
|
|
|

|
|

|
|

|

|

|

|
|

Environment variables

HPCT_BASE
Specifies the path name of the directory where the IBM HPC Toolkit is
installed (/opt/ibmhpc/ppedev.hpct).

Example
#include <gpm.h>
int main(int argc, char **argv)
{

int rc = 0;

...

rc = gpm_init();
if (0 != rc) {

/* process error code */
...

}

/* start counting GPM hardware counter events */
rc = gpm_start();
if (0 != rc) {

/* process error code here */
...

}

...

/* stop counting GPM hardware counter events */
rc = gpm_stop();
if (0 != rc) {

/* process error code here */
...

}

rc = gpm_terminate();
if (0 != rc) {

/* process error code */
...

}
}

PROGRAM gpmtest
INCLUDE "f_gpm.inc"

RC = gpm_init()
if (RC != 0)
! process return code

...

RC = gpm_start()
if (RC != 0)
! process return code

...

...

RC = gpm_stop()
if (RC != 0)
! process return code

...

140 High Performance Computing Toolkit: Installation and Usage Guide

|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

RC = gpm_terminate()
if (RC != 0)
! process return code

...

END PROGRAM

Chapter 18. Application programming interfaces 141

|
|
|
|
|
|

gpm_terminate - Generate GPU Performance Monitoring statistics and
trace files and shut down the GPM runtime environment

Use gpm_terminate to terminate the GPU Performance Monitoring (GPM) runtime
environment and generate statistics and trace files.

Library

libgpm.so (-lgpm)

C syntax
#include <gpm.h>
int gpm_terminate(void)

FORTRAN syntax
INCLUDE "h_gpm.inc"
INTEGER FUNCTION gpm_terminate()

Parameters

None.

Description

The gpm_terminate function generates statistics and output files for the events and
metrics profiled, and terminates the GPM runtime environment.

This function must be called before the application terminates to generate statistics
and trace information and must be the last GPM function called by the application.

This function produces several types of output, which users can control using
environment variables.

The include files shown in the syntax section are located in the
${IHPCT_BASE}/include directory.

For a complete list of environment variables used by this function, see Appendix C,
“HPC Toolkit environment variables,” on page 271.

Returns

Upon successful completion, gpm_terminate returns GPM_OK, terminates the
GPM runtime environment, and produces statistics and trace data.

If an error occurs, gpm_terminate returns one of the following:

GPM_ECUPTI
An error occurred in the CUPTI library.

GPM_ENOMEM
Memory allocation failure.

GPM_EFOPEN
Error opening one of the output files.

142 High Performance Computing Toolkit: Installation and Usage Guide

|

|

|
|

|

|

|

|
|

|

|
|

|

|

|

|
|

|
|

|
|

|
|

|
|

|

|
|

|

|
|

|
|

|
|

More information about the error can be obtained from the PE DE log file. For
information about how to generate a log file, see Chapter 5, “Generating a log file,”
on page 21.

Environment variables

GPM_ASC_OUTPUT
Instructs the routine to produce an ASCII text file (.txt) containing the
cumulative results of the event or metric profiling. The ASCII text file can
be viewed with a text editor.

GPM_ENABLE_TRACE
Instructs the routine to produce a trace file containing all profiling records.
The trace file can be visualized using the hpctView command.

GPM_PRINT
Instructs the routine to produce statistics and trace data in files.

GPM_STDOUT
Instructs the routine to produce statistics and profiling data to stdout. The
results provided are not cumulative. Instead, each performance record is
output to stdout.

GPM_VIZ_OUTPUT
Instructs the routine to produce an XML file (.viz) containing the
cumulative results of the event or metric profiling. The XML visualization
file can be viewed with the hpctView command.

IHPCT_BASE
Specifies the path name of the directory where the IBM HPC Toolkit is
installed (/opt/ibmhpc/ppedev.hpct).

Example
#include <gpm.h>
int main(int argc, char **argv)
{

int rc = 0;
...
rc = gpm_init();
if (0 != rc) {

/* process error code */
...

}

...

rc = gpm_terminate();
if (0 != rc) {

/* process error code */
...

}
}

PROGRAM gpmtest
INCLUDE "f_gpm.inc"

RC = gpm_init()
if (RC != 0)
! process return code

...

Chapter 18. Application programming interfaces 143

|
|
|

|

|
|
|
|

|
|
|

|
|

|
|
|
|

|
|
|
|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

RC = gpm_terminate()
if (RC != 0)
! process return code

END PROGRAM

144 High Performance Computing Toolkit: Installation and Usage Guide

|
|
|
|
|

gpm_Tstart - Identify the starting point of an instrumented region of
code

Use gpm_Tstart to identify the starting point of an instrumented region of code for
which GPU hardware performance counter events and metrics are to be counted
on a per-thread basis.

Library

libgpm.so (-lgpm)

C syntax
#include <gpm.h>
int gpm_Tstart(void)

FORTRAN syntax
INCLUDE "h_gpm.inc"
INTEGER FUNCTION gpm_Tstart()

Parameters

None.

Description

The gpm_Tstart() function identifies a region of code in which GPU hardware
performance counter events are to be counted. The end of the region is identified
by a call to the gpm_Tstop() function.

The region of the code identified by calls to the gpm_Tstart() and gpm_Tstop()
functions must be in code that runs on the CPU and not on the GPU. The effect of
this call is to enable the CUPTI callbacks used for counting the specified GPU
hardware counter events and metrics. When enabled, the CUPTI callbacks will
always remain enabled for the entire execution of any CUDA kernels.

In multithreaded applications, the counting of GPU hardware counters is
performed for all GPU kernels launched from the POSIX thread in which the call
to gpm_Tstart() was made. If you need to measure GPU hardware counter events
for GPU kernels launched from all POSIX threads, use the gpm_start() and
gpm_stop() functions.

The gpm_Tstart() and gpm_Tstop() functions must be called in pairs. Nesting of
the instrumented code regions within the same POSIX thread has no effect on the
counting of the GPU hardware counting events for that thread.

The include files shown in the syntax are located in the ${IHPCT_BASE}/include
directory.

For a complete list of environment variables used by this function, see Appendix C,
“HPC Toolkit environment variables,” on page 271.

Chapter 18. Application programming interfaces 145

|

|

|
|
|

|

|

|

|
|

|

|
|

|

|

|

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|
|

|
|

|
|

Returns

Upon successful completion, gpm_Tstart returns 0.

If an error occurs, gpm_Tstart returns the following:

GPM_EMISC
POSIX thread error or improper use of gpm_Tstart() and gpm_Tstop()
pairing.

Environment variables

IHPCT_BASE
Specifies the path name of the directory where the IBM HPC Toolkit is
installed (/opt/ibmhpc/ppedev.hpct).

Example
#include <gpm.h>
int main(int argc, char **argv)
{

int rc = 0;

...

rc = gpm_init();
if (0 != rc) {

/* process error code */
...

}

/* start counting GPM hardware counter events */
rc = gpm_Tstart();
if (0 != rc) {

/* process error code here */
...

}

...

/* stop counting GPM hardware counter events */
rc = gpm_Tstop();
if (0 != rc) {

/* process error code here */
...

}

rc = gpm_terminate();
if (0 != rc) {

/* process error code */
...

}
}

PROGRAM gpmtest
INCLUDE "f_gpm.inc"

RC = gpm_init()
if (RC != 0)
! process return code

...

RC = gpm_Tstart()
if (RC != 0)
! process return code

146 High Performance Computing Toolkit: Installation and Usage Guide

|

|

|

|
|
|

|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

...

...

RC = gpm_Tstop()
if (RC != 0)

! process return code
...

RC = gpm_terminate()
if (RC != 0)
! process return code

...

END PROGRAM

Chapter 18. Application programming interfaces 147

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

gpm_Tstop - Identify the end point of an instrumented region of code
Use gpm_Tstop to identify the end point of an instrumented region of code
identified using gpm_Tstart() for which GPU hardware performance counter events
and metrics are to be counted.

Library

libgpm.so (-lgpm)

C syntax
#include <gpm.h>
int gpm_Tstop(void)

FORTRAN syntax
INCLUDE "h_gpm.inc"
INTEGER FUNCTION gpm_Tstop()

Parameters

None.

Description

The gpm_Tstop() function identifies the end of a region of code in which GPU
hardware performance counter events are to be counted. The beginning of the
instrumented region of code is identified by a call to the gpm_Tstart() function.

The gpm_Tstart() and gpm_Tstop() routines must be called in pairs in the same
POSIX thread. Nesting the instrumented regions in the same POSIX thread has no
effect on how the GPU hardware counter events and metrics are counted.

The region of the code identified by calls to the gpm_Tstart() and gpm_Tstop()
functions must be in code that runs on the CPU and not on the GPU. The effect of
this call is to disable the CUPTI callbacks used for counting the specified GPU
hardware counter events and metrics. When enabled, the CUPTI callbacks will
always remain enabled for the entire execution of any CUDA kernels.

In multithreaded applications, the counting of GPU hardware counters is
performed only for the GPU kernels launched from the POSIX threads in which
the gpm_Tstart() and gpm_Tstop() calls were made. If you need to measure GPU
hardware counter events for GPU kernels launched from all POSIX threads, use the
gpm_start() and gpm_stop() functions.

The include files shown in the syntax are located in the ${IHPCT_BASE}/include
directory.

For a complete list of environment variables used by this function, see Appendix C,
“HPC Toolkit environment variables,” on page 271.

Returns

Upon successful completion, gpm_Tstop() returns 0.

If an error occurs, gpm_Tstop() returns the following:

148 High Performance Computing Toolkit: Installation and Usage Guide

|

|
|
|

|

|

|

|
|

|

|
|

|

|

|

|
|
|

|
|
|

|
|
|
|
|

|
|
|
|
|

|
|

|
|

|

|

|

GPM_EMISC
Error from the POSIX thread or improper use of the gpm_Tstart() and
gpm_Tstop() pairing.

Environment variables

HPCT_BASE
Specifies the path name of the directory where the IBM HPC Toolkit is
installed (/opt/ibmhpc/ppedev.hpct).

Example
#include <gpm.h>
int main(int argc, char **argv)
{

int rc = 0;

...

rc = gpm_init();
if (0 != rc) {

/* process error code */
...

}

/* start counting GPM hardware counter events */
rc = gpm_Tstart();
if (0 != rc) {

/* process error code here */
...

}

...

/* stop counting GPM hardware counter events */
rc = gpm_Tstop();
if (0 != rc) {

/* process error code here */
...

}

rc = gpm_terminate();
if (0 != rc) {

/* process error code */
...

}
}

PROGRAM gpmtest
INCLUDE "f_gpm.inc"

RC = gpm_init()
if (RC != 0)
! process return code

...

RC = gpm_Tstart()
if (RC != 0)
! process return code

...

...

RC = gpm_Tstop()
if (RC != 0)

Chapter 18. Application programming interfaces 149

|
|
|

|

|
|
|

|

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

! process return code
...

RC = gpm_terminate()
if (RC != 0)
! process return code

...

END PROGRAM

150 High Performance Computing Toolkit: Installation and Usage Guide

|
|
|
|
|
|
|
|
|

hpm_error_count, f_hpm_error - Verify a call to a libhpc function
Use hpm_error_count or f_hpm_error to verify that a call to a libhpc function was
successful.

Library
-lhpc

C syntax
#include <libhpc.h>

FORTRAN syntax
#include <f_hpc.h>
#include <f_hpc_i8.h>
logical function f_hpm_error()

Notes:

1. Use f_hpc.h for programs compiled without –qintsize=8 and use f_hpc_i8.h for
programs compiled with –qintsize=8.

2. FORTRAN programs that include either of these headers need to be
preprocessed by the C preprocessor. This might require the use of the xlf
-qsuffix option, for instance, -qsuffix=cpp=f or the gfortan option -cpp.
Another option is to use the .F Fortran source file extension.

Parameters

None.

Description

hpm_error_count is an external variable that HPM library functions set if an error
occurs during a call to that function. The f_hpm_error() function is the equivalent
FORTRAN function that returns a logical value indicating that an error occurred
during an HPM library call.

If an HPM library call is successful, hpm_error_count is set to zero and
f_hpm_error() returns false. If an HPM library call fails, hpm_error_count is set to
a non zero value and f_hpm_error() returns true.

The hpm_error_count variable or f_hpm_error() function should be used at any
point where you need to determine if an HPM library function call failed.

The include files shown in the syntax are located in the ${IHPCT_BASE}/include
directory.

Environment variables

None.

Examples
#include <libhpc.h>
#include <stdio.h>
#include <stdlib.h>
int main(int argc, char *argv[])
{

hpmInit(0, “HPMTest”);

Chapter 18. Application programming interfaces 151

if (hpm_error_count) {
printf(“hpmInit error\n”);
exit(1);

}
.
.
.
hpmTerminate(0);
if (hpm_error_count) {

printf(“hpmTerminate error\n”);
exit(1);

}
}

program hpmtest
#include “f_hpc.h”
call f_hpminit(0, 'HPMTest')
if (f_hpm_error() .eqv. .true.) then

print *, 'f_hpminit error'
stop 1

end if
.
.
.
call f_hpmterminate(0)
if (f_hpm_error() .eqv. .true.) then

print *, 'f_hpmterminate error'
stop 1

end if
end

152 High Performance Computing Toolkit: Installation and Usage Guide

hpmInit, f_hpminit - Initialize the Hardware Performance Monitor (HPM)
run-time environment

Use hpmInit or f_hpminit to initialize the Hardware Performance Monitor (HPM)
run-time environment.

Library
-lhpc

C syntax
#include <libhpc.h>
void hpmInit(int my_ID, const char *progName)

FORTRAN syntax
#include <f_hpc.h>
#include <f_hpc_i8.h>
subroutine f_hpminit(integer my_ID, character progName(*))

Notes:

1. Use f_hpc.h for programs compiled without –qintsize=8 and use f_hpc_i8.h for
programs compiled with –qintsize=8.

2. FORTRAN programs that include either of these headers need to be
preprocessed by the C preprocessor. This might require the use of the xlf
-qsuffix option, for instance, -qsuffix=cpp=f or the gfortan option -cpp.
Another option is to use the .F Fortran source file extension.

Parameters

my_ID Unused. Should be set to zero.

progName
Specifies the name of the program. If the HPC_OUTPUT_NAME
environment variable is not set, this parameter is used as the file name
prefix. If it is NULL, then the value hpct is used.

Description

This function initializes the run-time environment for obtaining hardware
performance counter statistics. It optionally names the output files containing these
statistics. It must be the first HPM function call executed in the application.

For more information about file naming conventions, see Appendix A,
“Performance data file naming,” on page 197.

The include files shown in the syntax are located in the ${IHPCT_BASE}/include
directory.

Environment variables

Event selection environment variables

HPM_EVENT_SET
A single value that specifies the hardware counter group to be used, or a
comma-delimited list of hardware counter groups. When multiple CPU
hardware counter groups are specified, they will be multiplexed. If

Chapter 18. Application programming interfaces 153

HPM_EVENT_SET is not set, a processor-specific default group is used.
The default group for POWER8 is group number 226, defined as follows:

PM_FPU0_FCONV
Convert instruction executed.

PM_FPU0_FEST
Estimate instruction executed.

PM_FPU0_FRSP
Round to single precision instruction executed.

PM_LSU_LDF
FPU loads only on LS2/LS3 ie LU0/LU1.

PM_RUN_INST_CMPL
Run_Instructions.

PM_RUN_CYC
Run_cycles.

HPM_EXCLUSIVE_VALUES
Set to yes if exclusive counter values in nested counter regions are to be
computed.

HPM_COUNTING_MODE
Specifies the CPU mode where counting will occur. Set this to a
comma-separated list of any combination of the following three possible
values:

user Set to user to have user-side events counted.

kernel Set to kernel to have kernel or system events counted.

hypervisor
Set to hypervisor to have hypervisor events counted.

The default setting for libhpc.a is user.

Output control environment variables

HPM_ASC_OUTPUT
Determines whether or not to generate an ASCII output file. The output
file name is:
name.hpm[.progName].txt

where:

name
Is obtained from the HPC_OUTPUT_NAME environment variable.

progName
Is specified if the second parameter to the hpmInit() call is non-NULL.

Valid values are yes or no.

If neither HPM_ASC_OUTPUT or HPM_VIZ_OUTPUT are set, both the
ASCII and XML output files are generated. If at least one is set, the
following rules apply:
v HPM_ASC_OUTPUT, if set to yes, triggers the ASCII output
v HPM_VIZ_OUTPUT, if set to yes, triggers the XML output

154 High Performance Computing Toolkit: Installation and Usage Guide

HPC_OUTPUT_NAME
Specifies the name prefix of the output files:
name.hpm[.progName].txt

and
name.hpm[.progName].viz

The name.hpm[.progName].viz file can be viewed using the hpctView
application or the HPCT plugin.

where:

progName
Is specified if the second parameter to the hpminit() call is non-NULL.

If this environment variable is not set, then name is set to the value of the
hpct. For more information about file naming conventions, see
Appendix A, “Performance data file naming,” on page 197.

HPM_PRINT_FORMULA
Set to yes to print the definitions of the derived metrics. Set to no to
suppress this output. The default is no.

HPM_STDOUT
Set to yes to write ASCII output to stdout. If HPM_STDOUT is set to no,
no output is written to stdout. The default is yes.

HPC_UNIQUE_FILE_NAME
Set to yes in order to generate unique file names for generated ASCII and
XML output files. Set to no to generate the file name exactly as specified
by HPC_OUTPUT_NAME. For more information about file naming
conventions, see Appendix A, “Performance data file naming,” on page
197.

HPM_VIZ_OUTPUT
Set to yes to generate an XML output file with the name:
name.hpm[.progName].viz

where:

name
Is specified by the HPC_OUTPUT_NAME environment variable.

progName
Is specified if the second parameter to the hpmInit() call is non-NULL.

If neither HPM_ASC_OUTPUT or HPM_VIZ_OUTPUT are set, both the
ASCII and XML output files are generated. If at least one is set, the
following rules apply:
v HPM_ASC_OUTPUT, if set to yes, triggers the ASCII output.
v HPM_VIZ_OUTPUT, if set to yes, triggers the XML output. This file can

be viewed using the hpctView application or the HPCT plugin.

Plug-in specific environment variables

HPM_ROUND_ROBIN_CLUSTER
HPM_ROUND_ROBIN_CLUSTER allows setting the number of groups
distributed per task.

Chapter 18. Application programming interfaces 155

|
|

|
|

Without the environment variable HPM_ROUND_ROBIN_CLUSTER set,
the average.so plug-in will distribute the group numbers from
HPM_EVENT_SET in a round-robin fashion, one group to each of the MPI
tasks in the application.

The default value for HPM_ROUND_ROBIN_CLUSTER is 1. The default
will be used if a value less than 1 is specified.

The number of groups spread out round-robin fashion to the tasks will be
limited to the first "number of tasks times the setting of
HPM_ROUND_ROBIN_CLUSTER" groups.

If a value greater than the number of groups in HPM_EVENT_SET is
specified, HPM_ROUND_ROBIN_CLUSTER will be set to the number of
groups specified in HPM_EVENT_SET.

It is possible that the number of groups does not distribute evenly to the
tasks. The first task will get at most HPM_ROUND_ROBIN_CLUSTER of
the groups in HPM_EVENT_SET. If there are more tasks and groups left,
the second task will get at most HPM_ROUND_ROBIN_CLUSTER of the
groups left in HPM_EVENT_SET and so on, until there are no groups
unused in HPM_EVENT_SET. After the groups in HPM_EVENT_SET
have been used once, and there are more tasks, this process will repeat
until there are no more tasks.

The environment variable HPM_ROUND_ROBIN_CLUSTER is
recognized only when the average.so aggregation plug-in is selected.

HPM_PRINT_TASK
Specifies the MPI task that has its results displayed. The default task
number is zero. This environment variable is recognized only when the
single.so aggregation plug-in is selected.

Miscellaneous environment variables

HPM_AGGREGATE
Specifies the name of a plug-in that defines the HPM data aggregation
strategy. If the plug-in name contains a /, the name is treated as an
absolute or relative path name. If the name does not contain a /, the
plug-in is loaded following the rules for the dlopen() function call. The
plug-in is a shared object file that implements the distributor() and
aggregator() functions. See “Hardware performance counter plug-ins” on
page 83 for more information.

IHPCT_BASE
Specifies the path name of the directory in which the IBM HPC Toolkit is
installed (/opt/ibmhpc/ppedev.hpct).

Examples
#include <libhpc.h>
int main(int argc, char *argv[])
{

hpmInit(0, “HPMTest”);
.
.
.
hpmTerminate(0);

}

program hpmtest
#include “f_hpc.h”
call f_hpminit(0, 'HPMTest')

156 High Performance Computing Toolkit: Installation and Usage Guide

.

.

.
call f_hpmterminate(0)
end

Chapter 18. Application programming interfaces 157

hpmStart, f_hpmstart - Identify the starting point for an instrumented
region of code

Use hpmStart or f_hpmstart to identify the starting point for an instrumented
region of code in which hardware performance counter events are to be counted.

Library
-lhpc

C syntax
#include <libhpc.h>
void hpmStart(int inst_ID, const char *label);

FORTRAN syntax
#include <f_hpc.h>
#include <f_hpc_i8.h>
subroutine f_hpmstart(integer inst_ID, character label(*))

Notes:

1. Use f_hpc.h for programs compiled without –qintsize=8 and use f_hpc_i8.h for
programs compiled with –qintsize=8.

2. FORTRAN programs that include either of these headers need to be
preprocessed by the C preprocessor. This might require the use of the xlf
-qsuffix option, for instance, -qsuffix=cpp=f or the gfortan option -cpp.
Another option is to use the .F Fortran source file extension.

Parameters

inst_ID
Specifies a unique value identifying the instrumented code region.

label Specifies the name associated with the instrumented code region. This
name is used to identify the code region in the generated performance
data.

Description

The hpmStart() function identifies the start of a region of code in which hardware
performance counter events are to be counted. The end of the region is identified
by a call to hpmStop() using the same inst_ID.

The hpmStart() function assigns an identifier and a name to that region. When this
function is executed, it records the starting value for the hardware performance
counters that are being used. When the corresponding hpmStop() function call is
executed, the hardware performance counters are read again and the difference
between the current values and the starting values is accumulated.

Regions of code bounded by hpmStart() and hpmStop() calls can be nested. When
regions are nested, hpmStart() and hpmStop() properly accumulate hardware
events so they can be properly accounted for with both inclusive and exclusive
reporting.

If hpmStart() and hpmStop() functions are called in a threaded application, the
count of hardware performance counter events is for the entire process rather than
for the specific thread on which the calls are made. If you need accurate counts for
each thread, use hpmTstart() and hpmTstop().

158 High Performance Computing Toolkit: Installation and Usage Guide

The include files are located in the ${IHPCT_BASE}/include directory.

Environment variables

See “hpmInit, f_hpminit - Initialize the Hardware Performance Monitor (HPM)
run-time environment” on page 153.

Examples
#include <libhpc.h>
int main(int argc, char *argv[])
{

int i;
float x;
x = 10.0;
hpmInit(0, “HPMTest”);
hpmStart(1, “Region 1”);
for (i = 0; i < 100000; i++) {

x = x / 1.001;
}
hpmStop(1);
hpmTerminate(0);

}

program hpmtest
#include “f_hpc.h”
integer i
real*4 x
call f_hpminit(0, 'HPMTest')
x = 10.0;
call f_hpmstart(1, 'Region 1')
do 10 i = 1, 100000

x = x / 1.001
10 continue

call f_hpmstop(1)
call f_hpmterminate(0)
end

Chapter 18. Application programming interfaces 159

hpmStartx, f_hpmstartx - Identify the starting point for an instrumented
region of code

Use hpmStartx or f_hpmstartx to identify the starting point for an instrumented
region of code in which hardware performance counter events are to be counted,
specifying explicit inheritance relationships for nested instrumentation regions.

Library
-lhpc

C syntax
#include <libhpc.h>
void hpmStartx(int inst_ID, int parent_ID, const char *label);

FORTRAN syntax
#include <f_hpc.h>
#include <f_hpc_i8.h>
subroutine f_hpmtstartx(integer inst_ID, integer parent_ID, character label(*))

Notes:

1. Use f_hpc.h for programs compiled without –qintsize=8 and use f_hpc_i8.h for
programs compiled with –qintsize=8.

2. FORTRAN programs that include either of these headers need to be
preprocessed by the C preprocessor. This might require the use of the xlf
-qsuffix option, for instance, -qsuffix=cpp=f or the gfortan option -cpp.
Another option is to use the .F Fortran source file extension.

Parameters

inst_ID
Specifies a unique value identifying the instrumented code region.

parent_ID
Specifies the inheritance relationship for nested hpmStart() calls. This
parameter must have one of the following values:
v HPM_AUTO_PARENT

v HPM_ONLY_EXCLUSIVE

v HPM_NO_PARENT

v The inst_ID of an active hpmStart() or hpmStartx() call

label Specifies the name associated with the instrumented code region. This
name is used to identify the code region in the generated performance
data.

Description

The hpmStartx() function identifies the start of a region of code in which hardware
performance counter events are to be counted, and explicitly specifies the parent
relationship for an encompassing region instrumented by hpmStart() or
hpmStartx(). The end of the region is identified by a call to hpmStop() using the
same inst_ID.

The hpmStartx() function assigns an identifier and a name to that region. When
this function is executed, it records the starting value for the hardware
performance counters that are being used. When the corresponding hpmStop()

160 High Performance Computing Toolkit: Installation and Usage Guide

function call is executed, the hardware performance counters are read again and
the difference between the current values and the starting values is accumulated.

Regions of code bounded by hpmStartx() and hpmStop() calls can be nested.
When regions are nested, hpmStartx() and hpmStop() properly accumulate
hardware events so they can be properly accounted for with both inclusive and
exclusive reporting. For reporting of exclusive event counts, the proper parent
relationship must be determined. If regions are perfectly nested, such as a set of
nested loops, hpmStart() is sufficient for determining parent relationships. In more
complicated nesting cases, hpmStartx() should be used to properly specify those
relationships.

Parent relationships are specified by the parent_ID parameter which must have
one of the following values:

HPM_AUTO_PARENT
Automatically determine the parent for this hpmStartx() call. This is done
by searching for the immediately preceding hpmStart() or hpmStartx() call
executed on the current thread in which there has not been a
corresponding call made to hpmStop().

HPM_ONLY_EXCLUSIVE
This operates in the same way as if HPM_AUTO_PARENT was specified,
and also acts as if the HPM_EXCLUSIVE_VALUES environment variable
was set for this call to hpmStartx() only. If the
HPM_EXCLUSIVE_VALUES environment variable was previously set, this
parameter value is equivalent to specifying HPM_AUTO_PARENT.

HPM_NO_PARENT
Specifies that this hpmStartx() call has no parent.

inst_ID
For a previous hpmStart() or hpmStartx() call that is currently active,
meaning the corresponding call to hpmStop() has not been made for this
instance of execution.

If hpmStartx() and hpmStop() functions are called in a threaded application, the
count of hardware performance counter events is for the entire process rather than
for the specific thread on which the calls were made. If you need accurate counts
for each thread, use hpmTstartx() and hpmTstop().

The include files shown in the syntax are located in the ${IHPCT_BASE}/include
directory.

Environment variables

See “hpmInit, f_hpminit - Initialize the Hardware Performance Monitor (HPM)
run-time environment” on page 153.

Examples
#include <libhpc.h>
int main(int argc, char *argv[])
{

int i;
int j;
float x;
x = 10.0;
hpmInit(0, “HPMTest”);
hpmStartx(1, HPM_NO_PARENT, “Region 1”);

Chapter 18. Application programming interfaces 161

for (i = 0; i < 100000; i++) {
hpmStartx(2, 1, “Region 2”);
for (j = 0; j < 100000; j++) {
x = x / 1.001;

}
hpmStop(2);
x = x / 1.001;

}
hpmStop(1);
hpmTerminate(0);

}

program hpmtest
#include “f_hpc.h”
integer i
real*4 x
call f_hpminit(0, 'HPMTest')
x = 10.0;
call f_hpmstartx(1, HPM_NO_PARENT, 'Region 1')
do 10 i = 1, 100000

x = x / 1.001
10 continue

call f_hpmstop(1)
call f_hpmterminate(0)

end

162 High Performance Computing Toolkit: Installation and Usage Guide

hpmStop, f_hpmstop - Identify the end point of an instrumented region
of code

Use hpmStop or f_hpmstop to identify the end point of an instrumented region of
code starting with a call to hpmStart() or hpmStartx(), in which hardware
performance counter events are to be counted. It also accumulates hardware
performance counter events for that region.

Library
-lhpc

C syntax
#include <libhpc.h>
void hpmStop(int inst_ID);

FORTRAN syntax
#include <f_hpc.h>
#include <f_hpc_i8.h>
subroutine f_hpmstop(integer inst_ID)

Notes:

1. Use f_hpc.h for programs compiled without –qintsize=8 and use f_hpc_i8.h for
programs compiled with –qintsize=8.

2. FORTRAN programs that include either of these headers need to be
preprocessed by the C preprocessor. This might require the use of the xlf
-qsuffix option, for instance, -qsuffix=cpp=f or the gfortan option -cpp.
Another option is to use the .F Fortran source file extension.

Parameters

inst_ID
Specifies a unique value identifying the instrumented code region. This
value must match the inst_ID specified in the corresponding hpmStart() or
hpmStartx() function call.

Description

The hpmStop() function identifies the end of a region of code in which hardware
performance counter events are to be monitored. The start of the region is
identified by a call to the hpmStart() or hpmStartx() function using the same
inst_ID. That function must be called for a specific inst_ID before the
corresponding call to the hpmStop() function.

The include files shown in the syntax are located in the ${IHPCT_BASE}/include
directory.

Environment variables

None.

Examples
#include <libhpc.h>
int main(int argc, char *argv[])
{

int i;
float x;

Chapter 18. Application programming interfaces 163

x = 10.0;
hpmInit(0, “HPMTest”);
hpmStart(1, “Region 1”);
for (i = 0; i < 100000; i++) {

x = x / 1.001;
}
hpmStop(1);
hpmTerminate(0);

}

program hpmtest
#include “f_hpc.h”
integer i
real*4 x
call f_hpminit(0, 'HPMTest')
x = 10.0;
call f_hpmstart(1, 'Region 1')
do 10 i = 1, 100000

x = x / 1.001
10 continue

call f_hpmstop(1)
call f_hpmterminate(0)
end

164 High Performance Computing Toolkit: Installation and Usage Guide

hpmTerminate, f_hpmterminate - Generate HPM statistic files and shut
down HPM

Use hpmStop or f_hpmstop to generate Hardware Performance Monitor (HPM)
statistics files and to shut down the HPM environment.

Library
-lhpc

C syntax
#include <libhpc.h>
void hpmTerminate(int my_ID)

FORTRAN syntax
#include <f_hpc.h>
#include <f_hpc_i8.h>
subroutine f_hpmterminate(integer my_ID)

Notes:

1. Use f_hpc.h for programs compiled without –qintsize=8 and use f_hpc_i8.h for
programs compiled with –qintsize=8.

2. FORTRAN programs that include either of these headers need to be
preprocessed by the C preprocessor. This might require the use of the xlf
-qsuffix option, for instance, -qsuffix=cpp=f or the gfortan option -cpp.
Another option is to use the .F Fortran source file extension.

Parameters

my_ID Unused. Should be set to zero.

Description

This function generates output files containing any hardware performance counter
statistics obtained during the program’s execution and shuts down the HPM
runtime environment. This function must be called before the application exits in
order to generate statistics. It must be the last HPM function called during
program execution.

If the HPM_AGGREGATE environment variable is set, and the instrumented
application is an MPI application, hpmTerminate() should be called before
MPI_Finalize() is called, because the plug-in specified by the HPM_AGGREGATE
environment variable might call MPI functions as part of its internal processing.

The include files shown in the syntax are located in the ${IHPCT_BASE}/include
directory.

Environment variables

See “hpmInit, f_hpminit - Initialize the Hardware Performance Monitor (HPM)
run-time environment” on page 153.

Examples
#include <libhpc.h>
int main(int argc, char *argv[])
{

hpmInit(0, “HPMTest”);

Chapter 18. Application programming interfaces 165

.

.

.
hpmTerminate(0);

}

program hpmtest
#include “f_hpc.h”
call f_hpminit(0, 'HPMTest')
.
.
.
call f_hpmterminate(0)
end

166 High Performance Computing Toolkit: Installation and Usage Guide

hpmTstart, f_hpmtstart - Identify the starting point for an instrumented
region of code

Use hpmTstart or f_hpmtstart to identify the starting point for an instrumented
region of code in which hardware performance counter events are to be counted
on a per-thread basis.

Library
-lhpc

C syntax
#include <libhpc.h>
void hpmTstart(int inst_ID, const char *label);

FORTRAN syntax
#include <f_hpc.h>
#include <f_hpc_i8.h>
subroutine f_hpmtstart(integer inst_ID, character label(*))

Notes:

1. Use f_hpc.h for programs compiled without –qintsize=8 and use f_hpc_i8.h for
programs compiled with –qintsize=8.

2. FORTRAN programs that include either of these headers need to be
preprocessed by the C preprocessor. This might require the use of the xlf
-qsuffix option, for instance, -qsuffix=cpp=f or the gfortan option -cpp.
Another option is to use the .F Fortran source file extension.

Parameters

inst_ID
Specifies a unique value identifying the instrumented code region.

label Specifies the name associated with the instrumented code region. This
name is used to identify the code region in the generated performance
data.

Description

The hpmTstart() function identifies the start of a region of code in which hardware
performance counter events are to be counted. The end of the region is identified
by a call to hpmTstop() using the same inst_ID.

The hpmTstart() function assigns an identifier and a name to that region. When
this function is executed, it records the starting value for the hardware
performance counters that are being used. When the corresponding hpmTstop()
function call is executed, the hardware performance counters are read again and
the difference between the current values and the starting values is accumulated.

Regions of code bounded by hpmTstart() and hpmTstop() calls can be nested.
When regions are nested, hpmTstart() and hpmTstop() properly accumulate
hardware events so they can be properly accounted for with both inclusive and
exclusive reporting.

The only difference between the hpmStart() and hpmTstart() functions is that a call
to hpmStart() results in reading the hardware performance counters for the entire

Chapter 18. Application programming interfaces 167

process while a call to hpmTstart() results in reading the hardware performance
counters only for the thread from which the call to hpmTstart() was made.

The include files shown in the syntax are located in the ${IHPCT_BASE}/include
directory.

Environment variables

See “hpmInit, f_hpminit - Initialize the Hardware Performance Monitor (HPM)
run-time environment” on page 153.

Examples
#include <libhpc.h>
void thread_func();
int main(int argc, char *argv[])
{

hpmInit(0, “HPMTest”);
thread_func(); /* assume this function runs on

multiple threads */
hpmTerminate(0);

}
void thread_func()
{

int i;
float x;
x = 10.0;
hpmTstart(1, “Region 1”);
for (i = 0; i < 100000; i++) {

x = x / 1.001;
}
hpmTstop(1);

}

program hpmtest
#include “f_hpc.h”
real*4 x
call f_hpminit(0, 'HPMTest')
x = thread_func() ! Assume thread_func runs on

! multiple threads
call f_hpmterminate(0)
end

real*4 function thread_func()
#include “f_hpc.h”
real*4 x
integer i
x = 10.0;
call f_hpmtstart(1, 'Region 1')
do 10 i = 1, 100000

x = x / 1.001
10 continue

call f_hpmtstop(1)
thread_func = x
return
end

168 High Performance Computing Toolkit: Installation and Usage Guide

hpmTstartx, f_hpmtstartx - Identify the starting point for an
instrumented region of code

Use hpmStartx or f_hpmstartx to identify the starting point for an instrumented
region of code in which hardware performance counter events are to be counted
on a per-thread basis, specifying explicit inheritance relationships for nested
instrumentation regions.

Library
-lhpc

C syntax
#include <libhpc.h>
void hpmTstartx(int inst_ID, int parent_ID, const char *label);

FORTRAN syntax
#include <f_hpc.h>
#include <f_hpc_i8.h>
subroutine f_hpmtstartx(integer inst_ID, integer parent_ID, character label(*))

Notes:

1. Use f_hpc.h for programs compiled without –qintsize=8 and use f_hpc_i8.h for
programs compiled with –qintsize=8.

2. FORTRAN programs that include either of these headers need to be
preprocessed by the C preprocessor. This might require the use of the xlf
-qsuffix option, for instance, -qsuffix=cpp=f or the gfortan option -cpp.
Another option is to use the .F Fortran source file extension.

Parameters

inst_ID
Specifies a unique value identifying the instrumented code region.

parent_ID
Specifies the inheritance relationship for nested hpmStart() calls. This
parameter must have one of the following values:
v HPM_AUTO_PARENT

v HPM_ONLY_EXCLUSIVE

v HPM_NO_PARENT

v The inst_ID of an active hpmTStart() or hpmTStartx() call

label Specifies the name associated with the instrumented code region. This
name is used to identify the code region in the generated performance
data.

Description

The hpmTstartx() function identifies the start of a region of code in which
hardware performance counter events are to be counted, on a per-thread basis, and
explicitly specifies the parent relationship for an encompassing region
instrumented by hpmTstart() or hpmTstartx(). The end of the region is identified
by a call to hpmTstop() using the same inst_ID.

The hpmTstartx() function assigns an identifier and a name to that region. When
this function is executed, it records the starting value for the hardware

Chapter 18. Application programming interfaces 169

performance counters that are being used. When the corresponding hpmTstop()
function call is executed, the hardware performance counters are read again and
the difference between the current values and the starting values is accumulated.

Regions of code bounded by hpmTstartx() and hpmTstop() calls can be nested.
When regions are nested, hpmTstartx() and hpmTstop() properly accumulate
hardware events so they can be properly accounted for with both inclusive and
exclusive reporting. For reporting of exclusive event counts, the proper parent
relationship must be determined. If regions are perfectly nested, such as a set of
nested loops, hpmTstart() is sufficient for determining parent relationships. In more
complicated nesting cases, hpmTstartx() should be used to properly specify those
relationships.

Parent relationships are specified by the parent_ID parameter which must have one
of the following values:

HPM_AUTO_PARENT
Automatically determine the parent for this hpmTstartx() call. This is done
by searching for the immediately preceding hpmTstart() or hpmTstartx()
call executed on the current thread in which there has not been a
corresponding call made to hpmStop().

HPM_ONLY_EXCLUSIVE
This operates in the same way as if HPM_AUTO_PARENT was specified,
and also acts as if the HPM_EXCLUSIVE_VALUES environment variable
was set for this call to hpmTstartx() only. If the
HPM_EXCLUSIVE_VALUES environment variable was previously set, this
parameter value is equivalent to specifying HPM_AUTO_PARENT.

HPM_NO_PARENT
Specifies that this hpmTstartx() call has no parent.

inst_ID
For a previous hpmTsStart() or hpmTstartx() call that is currently active,
meaning the corresponding call to hpmTstop() has not been made for this
instance of execution.

The include files shown in the syntax are located in the ${IHPCT_BASE}/include
directory.

Environment variables

See “hpmInit, f_hpminit - Initialize the Hardware Performance Monitor (HPM)
run-time environment” on page 153.

Examples
#include <libhpc.h>
void thread_func();
int main(int argc, char *argv[])
{

hpmInit(0, “HPMTest”);
thread_func(); /* assume this function runs on

multiple threads */
hpmTerminate(0);

}
void thread_func()
{

int i;
int j;

float x;

170 High Performance Computing Toolkit: Installation and Usage Guide

x = 10.0;
hpmTstartx(1, HPM_NO_PARENT, “Region 1”);
for (i = 0; i < 100000; i++) {

hpmTstartx(2, 1, “Region 2”);
for (j = 0; j < 100000; j++) {

x = x / 1.001;
}

hpmTstop(2);
x = x / 1.001;

}
hpmTstop(1);

}

program hpmtest
#include “f_hpc.h”
real*4 x
call f_hpminit(0, 'HPMTest')
x = thread_func() ! Assume thread_func runs on

! multiple threads
call f_hpmterminate(0)
end

real*4 function thread_func()
#include “f_hpc.h”
real*4 x

integer i
integer j

x = 10.0;
call f_hpmtstartx(1, HPM_NO_PARENT, 'Region 1')
do 10 i = 1, 100000

call f_hpmtstartx(2, 1, 'Region 2')
do 20 j = 1, 100000

x = x / 1.001
20 continue

call f_hpmtstop(2)
x = x / 1.001

10 continue
call f_hpmtstop(1)
thread_func = x

return
end

Chapter 18. Application programming interfaces 171

hpmTstop, f_hpmtstop - Identify the end point of an instrumented
region of code

Use hpmTstop or f_hpmtstop to identify the end point of an instrumented region
of code starting with a call to hpmTstart() or hpmTstartx() in which hardware
performance counter events are to be counted. Also accumulates hardware
performance counter events for that region.

Library
-lhpc

C syntax
#include <libhpc.h>
void hpmTstop(int inst_ID);

FORTRAN syntax
#include <f_hpc.h>
#include <f_hpc_i8.h>
subroutine f_hpmtstop(integer inst_ID)

Notes:

1. Use f_hpc.h for programs compiled without –qintsize=8 and use f_hpc_i8.h for
programs compiled with –qintsize=8.

2. FORTRAN programs that include either of these headers need to be
preprocessed by the C preprocessor. This might require the use of the xlf
-qsuffix option, for instance, -qsuffix=cpp=f or the gfortan option -cpp.
Another option is to use the .F Fortran source file extension.

Parameters

inst_ID
Specifies a unique value identifying the instrumented code region. This
value must match the inst_ID specified in the corresponding hpmTstart()
or hpmTstartx() function call.

Description

The hpmTstop() function identifies the end of a region of code in which hardware
performance counter events are to be monitored. The start of the region is
identified by a call to an hpmTstart() or hpmTstartx() function using the same
inst_ID. The hpmTstart() or hpmTstartx() function must be called for a specific
inst_ID before the corresponding call to the hpmStop() function.

The include files shown in the syntax are located in the ${IHPCT_BASE}/include
directory.

Environment variables

None.

Examples
#include <libhpc.h>
int main(int argc, char *argv[])
{

int i;
float x;

172 High Performance Computing Toolkit: Installation and Usage Guide

x = 10.0;
hpmInit(0, “HPMTest”);
hpmTstart(1, “Region 1”);
for (i = 0; i < 100000; i++) {

x = x / 1.001;
}
hpmTstop(1);
hpmTerminate(0);

}

program hpmtest
#include “f_hpc.h”
integer i
real*4 x
call f_hpminit(0, 'HPMTest')
x = 10.0;
call f_hpmtstart(1, 'Region 1')
do 10 i = 1, 100000

x = x / 1.001
10 continue

call f_hpmtstop(1)
call f_hpmterminate(0)
end

Chapter 18. Application programming interfaces 173

MT_get_allresults - Obtain statistical results
Use MT_get_allresults to obtain statistical results from performance data for an
MPI function.

Library

-lmpitrace

C syntax
#include <mpt.h>
#include <mpi_trace_ids.h>
int MT_get_allresults(int data_type, int mpi_id, struct MT_summarystruct *data);

Parameters

data_type
Specifies the type of data to be returned in the data parameter.

mpi_id An enumeration specifying the MPI function for which data is obtained.

data A structure, allocated by the user, containing the statistical data returned
by calling this function.

Description

This function computes statistical data from performance data accumulated for an
MPI function type or for all MPI functions in an application.

The data_type parameter specifies the statistical measurement that is returned by a
call to this function as follows:

COUNTS
The number of times the specified MPI function was called.

BYTES
The total number of bytes of data transferred in calls to the specified MPI
function.

COMMUNICATIONTIME
The total time spent in all calls to the specified MPI function.

STACK
The maximum stack address for any call to the specified MPI function.

HEAP
The maximum heap address for any call to the specified MPI function.

ELAPSEDTIME
Either the elapsed time between calls to MPI_Init() and MPI_Finalize(), or,
if that value is zero, the elapsed time since MPI_Init() was called.

The mpi_id parameter specifies the MPI function for which statistics are to be
computed. It must be either an enumeration from the table shown in the
MT_trace_event() function man page, also found in the $IHPCT_BASE/include/
mpi_trace_ids.h header file, or ALLMPI_ID to compute statistics for all MPI
functions profiled by the MPI trace library in the application.

If the mpi_id parameter is specified as ALLMPI_ID, meaningful results are
returned only when the data_type parameter is specified as BYTES or
COMMUNICATIONTIME. In all other cases, the returned data is zero.

174 High Performance Computing Toolkit: Installation and Usage Guide

This function fills in the MT_summarystruct structure allocated by the user, in
which the following fields are relevant:

int min_rank
The MPI task rank of the task corresponding to the value in the min_result
field.

int max_rank
The MPI task rank of the task corresponding to the value in the max_result
field.

int med_rank
The MPI task rank of the task corresponding to the value in the
med_result field.

void *min_result
The minimum value from all tasks for the measurement specified by the
data_type parameter.

void *max_result
The maximum value from all tasks for the measurement specified by the
data_type parameter.

void *med_result
The median value from all tasks for the measurement specified by the
data_type parameter.

void *avg_result
The average value from all tasks for the measurement specified by the
data_type parameter.

void *sum_result
The sum of the measurements from all tasks for the measurement specified
by the data_type parameter.

void *all_result
An array of measurements for all tasks, in MPI task rank order, for the
measurement specified by the data_type parameter.

void *sorted_all_result
An array of measurements for all tasks, sorted in data value order, for the
measurement specified by the data_type parameter.

int *sorted_rank
An array of MPI task ranks corresponding to the data values in the
sorted_all_result array.

The datatype of the min_result, max_result, med_result, avg_result and
sum_result fields depends on the value specified for the data_type parameter as
follows:

COUNTS
long long

BYTES
double

COMMUNICATIONTIME
double

STACK
double

HEAP double

Chapter 18. Application programming interfaces 175

ELASPSEDTIME
double

You must cast the fields to the appropriate data type in your code.

The all_result and sorted_all result arrays are arrays of the same data type as the
individual fields just described. You are responsible for freeing these arrays after
they are no longer needed.

This function can be useful when you implement your own version of
MT_output_text().

Returns

This function returns 1 for successful completion. It returns -1 if an error occurs.

Environment variables

IHPCT_BASE
Specifies the path name of the directory in which the IBM HPC Toolkit is
installed (/opt/ibmhpc/ppedev.hpct).

Example
#include <mpi.h>
#include <mpi_trace_ids.h>
#include <stdio.h>
int MT_output_text()
{

struct MT_summarystruct stats;
MT_get_allresults(BYTES, SEND_ID, &stats);
printf(“Minimum bytes sent (%11.6f) by task %d\n”,

(double) stats.min_result, stats.min_rank);
printf(“Maximum bytes sent (%11.6f) by task %d\n”,

(double) stats.max_result, stats.max_rank);
return 0;

}

176 High Performance Computing Toolkit: Installation and Usage Guide

MT_get_calleraddress - Obtain the address of the caller of an MPI
function

Use MT_get_calleraddress to obtain the address of the caller of an MPI function.

Library

-lmpitrace

C syntax
void *MT_get_calleraddress(int level);

Parameters

level Specifies the number of levels to walk up the call stack to get the caller’s
address.

Description

This function can be used within your implementation of MT_trace_event() to
obtain the address of the caller of an MPI function. If this function is called inside
your implementation of MT_trace_event() and the level parameter is specified as
zero, it obtains the address where the MPI function was called. If the level
parameter is specified as 1, this function returns the address where the function
that called the current MPI function was called.

Returns

This function returns the caller’s address as determined by the level parameter.

Environment variables

None.

Example
#include <mpt.h>
int MT_trace_event(int id)
{

unsigned long caller_addr;
caller_addr = MT_get_calleraddress(3);
return 1;

}

Chapter 18. Application programming interfaces 177

MT_get_callerinfo - Obtain source code information
Use MT_get_callerinfo to obtain source code information about the caller of an
MPI function.

Library

-lmpitrace

C syntax
#include <mpt.h>
int MT_get_callerinfo(unsigned long addr, struct MT_callerstruct src_info);

Parameters

addr Specifies the address for which source code information is to be obtained.

src_info
Contains the source code information returned by this function for the
specified caller address.

Description

This function can be used to obtain the source code information, including the file
name and line number corresponding to the address specified by the addr
parameter.

This function fills in the MT_callerstruct structure passed to it with the following
information:

char *filepath
The path name of the directory containing the source file.

char *filename
The file name of the source file.

char *funcname
The name of the function containing the caller address.

int lineno
The source line number corresponding to the address passed in the addr
parameter.

In order for this function to work correctly, the application should be compiled and
linked with the –g compiler option so that the required file name and line number
information is contained in the executable.

Returns

This function returns zero if the source file information was obtained. It returns -1
if the source file information could not be obtained.

Environment variables

None.

178 High Performance Computing Toolkit: Installation and Usage Guide

Example
#include <mpt.h>
#include <stdio.h>
int MT_trace_event(int id)
{

struct MT_callerstruct src_info;
int status;
unsigned long caller_addr;
caller_addr = MT_get_calleraddress(3);
status = MT_get_callerinfo(caller_addr, &src_info);
if (status == 0) {

printf(“%s was called from %s/%s(%s) line %d\n”,
MT_get_mpi_name(id), src_info.filepath,
src_info.filename, src_info.funcname,
src_info.lineno);

}
return 1;

}

Chapter 18. Application programming interfaces 179

MT_get_elapsed_time - Obtains elapsed time
Use MT_get_elapsed_time to get the elapsed time in seconds between a call to
MPI_Init() and a call to MPI_Finalize().

Library

-lmpitrace

C syntax
#include <mpt.h>
double MT_get_elapsed_time();

Parameters

None.

Description

This function returns the elapsed time, in seconds, between a call to MPI_Init()
and a call to MPI_Finalize().

This function can be useful when you implement your own version of
MT_output_text().

Returns

This function returns the time, in seconds, between a call to MPI_Init() and a call
to MPI_Finalize().

Environment variables

None.

Example
#include <stdio.h>
#include <mpt.h>
int MT_output_text()
{

printf(“Time between MPI_Init and MPI_Finalize is %11.6f seconds\n”,
MT_get_elapsed_time());

return 0;
}

180 High Performance Computing Toolkit: Installation and Usage Guide

MT_get_environment - Returns run-time environment information
Use MT_get_environment to return information about the run-time environment
for the application.

Library

-lmpitrace

C syntax
#include <mpt.h>;
void MT_get_environment(struct MT_envstruct *env);

Parameters

env A pointer to a structure, allocated by the user, which contains information
about the application runtime environment.

Description

This function is used to obtain information about the application runtime
environment by filling in the MT_envstruct structure allocated by the user. The
following fields in the MT_envstruct structure are relevant:

int mpirank
The MPI task rank for this task in the application.

int ntasks
The number of tasks in the MPI application.

int nmpi
The maximum index allowed for mpi_id when calling
MT_get_mpi_counts(), MT_get_mpi_bytes(), and MT_get_mpi_time().

Environment variables

None.

Example
#include <mpt.h>
#include <stdio.h>
int MT_output_text()
{

MT_envstruct env;
MT_get_environment(&env);
printf(“MPI task rank is %d\n”, env.mpirank);
return 0;

}

Chapter 18. Application programming interfaces 181

MT_get_mpi_bytes - Obtain the accumulated number of bytes
transferred

Use MT_get_mpi_bytes to obtain the accumulated number of bytes transferred by
a specific MPI function.

Library

-lmpitrace

C syntax
#include <mpt.h>
#include <mpi_trace_ids.h>
double MT_get_mpi_bytes(int mpi_ID);

Parameters

mpi_ID
An enumeration identifying the MPI function.

Description

The MT_get_mpi_bytes() function returns the accumulated number of bytes
transferred by this task for all MPI function calls corresponding to the enumeration
specified as mpi_ID. The mpi_ID parameter must be any of the values as specified
in Table 20 on page 190 or as specified in the $IHPCT_BASE/include/
mpi_trace_ids.h header file. However, meaningful results are returned only for
MPI functions that either send or receive data.

This function can be useful when you implement your own version of
MT_output_text().

Returns

This function returns the accumulated number of bytes transferred by this task for
the MPI function specified by the mpi_ID parameter.

Environment variables

IHPCT_BASE
Specifies the path name of the directory in which the IBM HPC Toolkit is
installed (/opt/ibmhpc/ppedev.hpct).

Example
#include <stdio.h>
#include <mpt.h>
#include <mpi_trace_ids.h>
int MT_output_text()
{

printf(“Total bytes sent using MPI_Send: %f11.6 bytes\n”,
MT_get_mpi_bytes(SEND_ID));

return 0;
}

182 High Performance Computing Toolkit: Installation and Usage Guide

MT_get_mpi_counts - Obtain the the number of times a function was
called

Use MT_get_mpi_counts to obtain the number of times the specified MPI function
was called.

Library

-lmpitrace

C syntax
#include <mpt.h>
#include <mpi_trace_ids.h>
long long MT_get_mpi_counts(int mpi_ID);

Parameters

mpi_ID
An enumeration identifying the MPI function.

Description

The MT_get_mpi_counts() function returns the number of times the specified MPI
function was called in this task. The mpi_ID parameter must be any of the values
as specified in Table 20 on page 190 or as specified in the $IHPCT_BASE/include/
mpi_trace_ids.h header file.

This function can be useful when you implement your own version of
MT_output_text().

Returns

This function returns the number of times the MPI function, specified by the
mpi_ID parameter, was called in this task.

Environment variables

IHPCT_BASE
Specifies the path name of the directory in which the IBM HPC Toolkit is
installed (/opt/ibmhpc/ppedev.hpct).

Example
#include <stdio.h>
#include <mpt.h>
#include <mpi_trace_ids.h>
int MT_output_text()
{

printf(“MPI_Send called %lld times\n”,
MT_get_mpi_counts(SEND_ID));

return 0;
}

Chapter 18. Application programming interfaces 183

MT_get_mpi_name - Returns the name of the specified MPI function
Use MT_get_mpi_name to return the name of the specified MPI function.

Library

-lmpitrace

C syntax
#include <mpt.h>
#include <mpi_trace_ids.h>
char *MT_get_mpi_name(int mpi_ID);

Parameters

mpi_ID
An enumeration identifying the MPI function.

Description

The MT_get_mpi_name() function returns the name of the specified MPI function.
The mpi_ID parameter must be any of the values as specified in Table 20 on page
190 or as specified in the $IHPCT_BASE/include/mpi_trace_ids.h header file.

This function can be useful when you implement your own version of
MT_output_text().

Returns

This function returns the name of the MPI function specified by the mpi_ID
parameter.

Environment variables

IHPCT_BASE
Specifies the path name of the directory in which the IBM HPC Toolkit is
installed (/opt/ibmhpc/ppedev.hpct).

Example
#include <stdio.h>
#include <mpt.h>
#include <mpi_trace_ids.h>
int MT_output_text()
{

printf(“%s called %lld times\n”,
MT_get_mpi_name(SEND_ID),
MT_get_mpi_counts(SEND_ID));

return 0;
}

184 High Performance Computing Toolkit: Installation and Usage Guide

MT_get_mpi_time - Obtain elapsed time
Use MT_get_mpi_time to obtain the elapsed time, in seconds, spent in the
specified MPI function.

Library

-lmpitrace

C syntax
#include <mpt.h>
#include <mpi_trace_ids.h>
double MT_get_mpi_time(int mpi_ID);

Parameters

mpi_ID
An enumeration identifying the MPI function.

Description

The MT_get_mpi_time() function returns the elapsed time spent in the specified
MPI function in this task. The mpi_ID parameter must be any of the values as
specified in Table 20 on page 190 or as specified in the $IHPCT_BASE/include/
mpi_trace_ids.h header file.

This function can be useful when you implement your own version of
MT_output_text().

Returns

This function returns the elapsed time spent, in seconds, in this task in the MPI
function specified by the mpi_ID parameter.

Environment variables

IHPCT_BASE
Specifies the path name of the directory in which the IBM HPC Toolkit is
installed (/opt/ibmhpc/ppedev.hpct).

Example
#include <stdio.h>
#include <mpt.h>
#include <mpi_trace_ids.h>
int MT_output_text()
{

printf(“MPI_Send spent %f11.6 seconds elapsed time\n”,
MT_get_mpi_time(SEND_ID));

return 0;
}

Chapter 18. Application programming interfaces 185

MT_get_time - Get the elapsed time
Use MT_get_time to get the elapsed time, in seconds, since MPI_Init() was called.

Library

-lmpitrace

C syntax
#include <mpt.h>
double MT_get_time();

Parameters

None.

Description

This function returns the time, in seconds, since MPI_Init() was called.

This function can be useful when you implement your own version of
MT_output_text().

Returns

This function returns the time, in seconds, since MPI_Init() was called.

Environment variables

None.

Example
#include <stdio.h>
#include <mpt.h>
int MT_output_text()
{

printf(“MPI_Init was called %f11.6 seconds ago.\n”,
MT_get_time());

return 0;
}

186 High Performance Computing Toolkit: Installation and Usage Guide

MT_get_tracebufferinfo - Obtain information about MPI trace buffer
usage

Use MT_get_tracebufferinfo to obtain information about MPI trace buffer usage
by the MPI trace library.

Library

-lmpitrace

C syntax
#include <mpt.h>
int MT_get_tracebufferinfo(struct MT_tracebufferstruct *info);

Parameters

info A pointer to an MT_tracebufferstruct structure allocated by the user,
which also contains the returned results from this function.

Description

This function obtains information about the internal MPI trace buffer used by the
MPI trace library. This function fills in an MT_tracebufferstruct allocated by the
user, where the following fields in this structure are relevant.

int number_events
The number of MPI trace events currently recorded in this buffer.

double total_buffer
The MPI trace buffer size, in megabytes.

double used_buffer
The amount of trace buffer used, in megabytes.

double free_buffer
The remaining free space in buffer, in megabytes.

Returns

This function returns 0 on successful completion and returns a nonzero value on
failure.

Environment variables

None.

Example
#include <mpt.h>
#include <stdio.h>
int MT_output_text()
{

MT_tracebufferstruct info;
MT_get_tracebufferinfo(&info);
printf(“%d MPI events were recorded\n”,

info.number_events);
printf(“%11.6fMB of %11.6fMB trace buffer used\n”,

info.used_buffer, info.total_buffer);
return 0;

}

Chapter 18. Application programming interfaces 187

MT_output_text - Generate performance statistics
Use MT_output_text to generate the performance statistics for your application
when your application calls MPI_Finalize().

Library

-lmpitrace

C syntax
#include <mpt.h>
int MT_output_text();

Parameters

None.

Description

This function generates performance statistics for your application. The MPI trace
library calls this function when MPI_Finalize() is called in your application. You
can override the default behavior of this function, generating a summary of MPI
performance statistics, by implementing your own version of MT_output_text()
and linking it with your application.

Returns

This function returns -1 if an error occurs. Otherwise this function returns 1.

Environment variables

None.

Example
#include <mpt.h>
#include <mpi_trace_ids.h>
#include <stdio.h>
int MT_output_text()
{

struct MT_summarystruct send_info;
struct MT_summarystruct recv_info;
MT_get_allresults(ELAPSEDTIME, SEND_ID, &send_info);
MT_get_allresults(ELAPSEDTIME, RECV_ID, &recv_info);
printf(“MPI_Send task with min. elapsed time: %d\n”,

send_info.min_rank);
printf(“MPI_Send task with max. elapsed time: %d\n”,

send_info.max_rank);
printf(“MPI_Recv task with min. elapsed time: %d\n”,

recv_info.min_rank);
printf(“MPI_Recv task with max. elapsed time: %d\n”,

recv_info.max_rank);
return 0;

}

188 High Performance Computing Toolkit: Installation and Usage Guide

MT_output_trace - Control whether an MPI trace file is created
Use MT_output_trace to control whether an MPI trace file is created for a specific
task.

Library

-lmpitrace

C syntax
#include <mpt.h>
int MT_output_trace(int rank);

Parameters

rank The MPI task rank of this task.

Description

This function controls whether an MPI trace file is generated for a specific MPI
task. You can override the default MPI trace library behavior of generating a trace
file for all tasks by implementing your own version of this function and linking it
with your application. The MPI trace library calls your implementation of this
function as part of its processing when your application calls MPI_Finalize().

Returns

0 If an MPI trace file is not to be generated for the MPI task from which this
function is called.

1 If an MPI trace file is to be generated for the MPI task from which this
function is called.

Environment variables

None.

Example
#include <mpt.h>
int MT_output_trace(int rank)
{

/* Generate trace files for even rank tasks only */
if ((rank % 2) == 0) {
return 1;

}
else {
return 0;

}
}

Chapter 18. Application programming interfaces 189

MT_trace_event - Control whether an MPI trace event is generated
Use MT_trace_event to control whether an MPI trace event is generated for a
specific MPI function call

Library

-lmpitrace

C syntax
#include <mpt.h>
#include <mpi_trace_ids.h>
int MT_trace_event(int mpi_ID)

Parameters

mpi_ID
An enumeration identifying the MPI function that is about to be traced.

Description

The MT_trace_event() function controls whether the MPI trace library should
generate a trace event for an MPI function call. The default behavior of the MPI
trace library is to generate trace events for all MPI function calls defined in the
mpi_trace_ids.h header. You override the default MPI trace library behavior by
implementing your own version of this function and linking it with your
application. The MPI trace library calls your implementation of this function each
time the MPI trace library is about to generate a trace event. You can control the
collection of MPI trace events for any function with an identifier as listed in
Table 20:

Table 20. Controlling the collection of MPI trace events for any function with an identifier

Function Function Function

COMM_SIZE_ID COMM_RANK_ID SEND_ID

SSEND_ID RSEND_ID BSEND_ID

ISEND_ID ISSEND_ID IRSEND_ID

IBSEND_ID SEND_INIT_ID SSEND_INIT_ID

RSEND_INIT_ID BSEND_INIT_ID RECV_INIT_ID

RECV_ID IRECV_ID SENDRECV_ID

SENDRECV_REPLACE_ID BUFFER_ATTACH_ID BUFFER_DETACH_ID

PROBE_ID IPROBE_ID TEST_ID

TESTANY_ID TESTALL_ID TESTSOME_ID

WAIT_ID WAITANY_ID WAITALL_ID

WAITSOME_ID START_ID STARTALL_ID

BCAST_ID BARRIER_ID GATHER_ID

GATHERV_ID SCATTER_ID SCATTERV_ID

SCAN_ID ALLGATHER_ID ALLGATHERV_ID

REDUCE_ID ALLREDUCE_ID REDUCE_SCATTER_ID

ALLTOALL_ID ALLTOALLW_ID ALLTOALLV_ID

ACCUMULATE_ID GET_ID PUT_ID

WIN_CREATE_ID WIN_COMPLETE_ID WIN_FENCE_ID

WIN_LOCK_ID WIN_POST_ID WIN_TEST_ID

WIN_UNLOCK_ID WIN_WAIT_ID COMPARE_AND_SWAP_ID

190 High Performance Computing Toolkit: Installation and Usage Guide

Table 20. Controlling the collection of MPI trace events for any function with an
identifier (continued)

Function Function Function

FETCH_AND_OP_ID GET_ACCUMULATE_ID IALLGATHER_ID

IALLGATHERV_ID IALLTOALL_ID IALLTOALLV_ID

IALLTOALLW_ID IBARRIER_ID IBCAST_ID

IEXSCAN_ID IGATHER_ID IMPROBE_ID

INEIGHBOR_ALLGATHER_ID INEIGHBOR_ALLGATHERV_ID INEIGHBOR_ALLTOALL_ID

INEIGHBOR_ALLTOALLV_ID INEIGHBOR_ALLTOALLW_ID IREDUCE_ID

IALLREDUCE_ID IREDUCE_SCATTER_ID IREDUCE_SCATTER_BLOCK_ID

ISCAN_ID ISCATTER_ID ISCATTERV_ID

MPROBE_ID NEIGHBOR_ALLGATHER_ID NEIGHBOR_ALLGATHERV_ID

NEIGHBOR_ALLTOALL_ID NEIGHBOR_ALLTOALLV_ID NEIGHBOR_ALLTOALLW_ID

RACCUMULATE_ID RGET_ID RGET_ACCUMULATE_ID

RPUT_ID WIN_ALLOCATE_ID WIN_ALLOCATE_SHARED_ID

WIN_CREATE_DYNAMIC_ID WIN_FLUSH_ID WIN_FLUSH_ALL_ID

WIN_FLUSH_LOCAL_ID WIN_FLUSH_LOCAL_ALL_ID WIN_LOCK_ALL_ID

WIN_SYNC_ID WIN_UNLOCK_ALL_ID

Returns

1 If a trace event should be generated for the MPI function call.

0 If no trace event should be generated.

Environment variables

See “MT_trace_start, mt_trace_start - Start or resume the collection of trace events”
on page 192.

Example
#include <mpt.h>
#include <mpi_trace_ids.h>
int MT_trace_event(int id)
{

/* Trace only MPI_Send and MPI_Recv calls */
if ((id == RECV_ID) || (id == SEND_ID)) {

return 1;
}
else {

return 0;
}

}

Chapter 18. Application programming interfaces 191

MT_trace_start, mt_trace_start - Start or resume the collection of trace
events

Use MT_trace_start or mt_trace_start to start or resume the collection of trace
events for all MPI calls.

Library

-lmpitrace

C syntax
#include <mpt.h>
void MT_trace_start()

FORTRAN syntax
subroutine mt_trace_start()

Parameters

None.

Description

MT_trace_start() is used to start the collection of MPI trace events or to resume the
collection of MPI trace events, if collection of these events has been suspended by
a call to MT_trace_stop(). The environment variable TRACE_ALL_EVENTS must
be set to no for MT_trace_start() to have any effect.

Environment variables

IHPCT_BASE
Specifies the path name of the directory in which the IBM HPC Toolkit is
installed (/opt/ibmhpc/ppedev.hpct).

MAX_TRACE_EVENTS
Specifies the maximum number of trace events that can be collected per
task. The default is 30000.

MAX_TRACE_RANK
Specifies the MPI task rank of the highest rank process that has MPI trace
events collected if TRACE_ALL_TASKS is set to no. The default is 256.

MT_BASIC_TRACE
Specifies whether the MAX_TRACE_RANK environment variable is
checked. If MT_BASIC_TRACE is set to yes, then MAX_TRACE_RANK is
ignored and the trace is generated with less overhead. If
MT_BASIC_TRACE is not set, then the setting of MAX_TRACE_RANK is
honored.

OUTPUT_ALL_RANKS
Used to control which tasks will generate trace output files. Set to yes to
generate trace files for all the enabled tasks specified by
TRACE_ALL_TASKS. The default is to generate trace files only for task 0
and the tasks that have the minimum, maximum, and median total MPI
communication time. If task 0 is the task with minimum, maximum, or
median communication time, only three trace files are generated by
default.

192 High Performance Computing Toolkit: Installation and Usage Guide

TRACE_ALL_EVENTS
Used to control when the collection of trace events starts and stops. Set to
yes to enable collection of tracing events for all MPI calls after MPI_Init().
If this environment variable is set to no, collection of MPI trace events is
controlled by MT_trace_start() and MT_trace_stop(). The default is yes.

TRACE_ALL_TASKS
Used to control how many tasks will be included in the tracing. Set to yes
to enable MPI trace generation for all MPI tasks in the application. The
default is no, which results in enabling trace generation for only the first
MAX_TRACE_RANK+1 tasks (task 0 through MAX_TRACE_RANK).

TRACEBACK_LEVEL
Specifies the number of levels to walk back in the function call stack when
recording the address of an MPI call. This can be used to record profiling
information for the caller of an MPI function rather than the MPI function
itself, which might be useful if the MPI functions are contained in a library.
The default is 0.

Example
#include <mpt.h>
#include <mpi.h>
int main(int argc, char *argv[])
{

MPI_Init(&argc, &argv);
MT_trace_start();

/* MPI communication region of interest */
MT_trace_stop();

/* MPI communication region of no interest */
MPI_Finalize();

}

program main
include 'mpif.h'
call mpi_init()
call mt_trace_start()
! MPI communication region of interest
call mt_trace_stop()
! MPI communication region of no interest
call mpi_finalize()
end

Chapter 18. Application programming interfaces 193

MT_trace_stop, mt_trace_stop - Suspend the collection of trace events
Use MT_trace_stop or mt_trace_stop to suspend the collection of trace events for
all MPI calls.

Library

-lmpitrace

C syntax
#include <mpt.h>
void MT_trace_stop()

FORTRAN syntax
subroutine mt_trace_stop()

Parameters

None.

Description

MT_trace_stop() is used to suspend the collection of MPI trace. The environment
variable TRACE_ALL_EVENTS must be set to no for MT_trace_stop() to have any
effect. MT_trace_start() might be called after a call to MT_trace_stop() to resume
collection of MPI trace events.

Environment variables

See “MT_trace_start, mt_trace_start - Start or resume the collection of trace events”
on page 192.

Example
#include <mpt.h>
#include <mpi.h>
int main(int argc, char *argv[])
{

MPI_Init(&argc, &argv);
MT_trace_start();

/* MPI communication region of interest */
MT_trace_stop();

/* MPI communication region of no interest */
MPI_Finalize();

}

program main
include 'mpif.h'
call mpi_init()
call mt_trace_start()
! MPI communication region of interest
call mt_trace_stop()
! MPI communication region of no interest
call mpi_finalize()
end

194 High Performance Computing Toolkit: Installation and Usage Guide

Part 8. Appendixes

© Copyright IBM Corp. 2008, 2015 195

196 High Performance Computing Toolkit: Installation and Usage Guide

Appendix A. Performance data file naming

The names of the performance data files generated by the HPC Toolkit are
dependent on the setting of the HPC_OUTPUT_NAME environment variable, the
HPC_UNIQUE_FILE_NAME environment variable, whether the application is a
serial program or a parallel MPI program, and whether MPI dynamic tasking is
used.

File naming conventions

Table 21 shows the file naming conventions for various tools and their types. The
value of the HPC_OUTPUT_NAME environment variable specifies the base
performance data file name, or if the value contains one or more file path
separators, it specifies both the dir and base components of the performance data
file name. If HPC_OUTPUT_NAME is not set, then there is no dir, and the value
of base is hpct. The first character of the value of the HPC_UNIQUE_FILE_NAME
environment variable specifies Y, y, or 1 to enable unique file naming, otherwise it
is disabled.

Table 21. File naming conventions for various tools and their types

Tool File naming

HPM Type Name

ascii [dir[_processId]/]base[_processId][_worldId_rankId].hpm[.subtype].txt
viz [dir[_processId]/]base[_processId][_worldId_rankId].hpm[.subtype].viz

MPI Type Name

ascii [dir[_processId]/]base[_processId][_worldId_rankId].mpi.txt
viz [dir[_processId]/]base[_processId][_worldId_rankId].mpi.viz
trace [dir[_processId]/]base[_processId][_worldId_rankId].mpi.mpt

OpenMP Type Name

ascii [dir[_processId]/]base[_processId][_worldId_rankId].omp.txt
viz [dir[_processId]/]base[_processId][_worldId_rankId].omp.viz

MIO Type Name

stats [dir[_processId]/]base[_processId][_worldId_rankId].mio[.subtype].txt
viz [dir[_processId]/]base[_processId][_worldId_rankId].mio[.subtype].viz
event [dir[_processId]/]base[_processId][_worldId_rankId].mio[.subtype].iot

Profiling For applications compiled without -hpcprof and not run under the hpcrun command, the gmon.out
file name follows the conventions of that environment. For example, Linux execution environment
outputs a gmon.out file (unless the GPROF environment variable defines a different prefix than
gmon), and for a IBM Parallel Environment (PE) Runtime Edition execution environment see the topic,
"Profiling programs with the gprof commands” in Parallel Environment Runtime Edition: Operation and
Use for the gmon output file naming convention.

where:

dir
Is the optional directory path portion of the specified file name from the
HPC_OUTPUT_NAME environment variable. The dir is appended with the
process ID, _processId, only if the HPC_UNIQUE_FILE_NAME environment
variable is set.

© Copyright IBM Corporation © IBM 2008, 2015 197

base
Is the base name portion of the specified file name from the
HPC_OUTPUT_NAME environment variable. The base is appended with the
process ID, _processId, only if the HPC_UNIQUE_FILE_NAME environment
variable is set and if a directory name is not present. The base is further
appended with the world ID and rank ID, _worldId_rankId, only for a MPI
parallel execution. In other words, the world ID and rank ID are not appended
for a serial execution.

processId
Is the optional process ID. It is the getpid() for a serial execution or the poe
process ID for an MPI parallel execution.

worldId
Is the optional world ID. For MPI without dynamic tasking it is zero (0). For
MPI with dynamic tasking it is the MPI world ID.

rankId
Is the optional rank ID. For MPI without dynamic tasking it is the rank ID. For
MPI with dynamic tasking it is the rank ID within the world.

tool
Is the tool name. The various tools are: hpm, mpi, omp, mio and gmon.

subtype
Is the optional subtype. The subtype is appended only if one is provided or
needed.
v For the HPM tool, the subtype depends on whether the hpccount command,

the hpcstat command, libhpc library, or a HPM instrumented binary is used:
– If the hpccount command is used, then the invoked executable's base

name is the subtype.
– If the hpcstat command is used, then hpcstat is the subtype.
– If libhpc is used, then the progName argument of hpmInit is the subtype,

unless the progName argument is NULL then the subtype is not defined.
– If the HPM instrumented binary is used, then the binary name is the

subtype.
v For the MIO tool, the subtype depends on the MIO_FILES and

MIO_DEFAULTS environment variables. The subtype is defined only if the
MIO_FILES or MIO_DEFAULTS environment variables specify an entry for
the trace module with the setting for its stats={subtype}, xml={subtype} or
events={subtype} keywords respectively.

type
Is the type of file, which is also known as the file extension. The various types
are: txt, viz, mpt, iot, and out.

File naming examples

The file naming conventions are shown in the following examples. For MPI
applications, these examples assume MP_PROCS is set to 5.
v For a serial program, named app, that is compiled, instrumented for HPM

analysis, and executed with HPC_OUTPUT_NAME set to sample, and
HPC_UNIQUE_FILE_NAME not set:
– A hardware counter ASCII data output file is named:

sample.hpm.app.txt

– A hardware counter visualization data output file is named:

198 High Performance Computing Toolkit: Installation and Usage Guide

sample.hpm.app.viz

v For a serial program that is compiled, instrumented for HPM analysis, and
executed with HPC_OUTPUT_NAME set to output/sample, and
HPC_UNIQUE_FILE_NAME not set:
– A hardware counter ASCII data output file is named:

output/sample.hpm.app.txt

– A hardware counter visualization data output file is named:
output/sample.hpm.app.viz

v For a serial program, named app, that is compiled, instrumented for HPM
analysis, and executed with HPC_OUTPUT_NAME set to sample,
HPC_UNIQUE_FILE_NAME set to y, and the process ID is 92878:
– A hardware counter ASCII data output file is named:

sample_92878.hpm.app.txt

– A hardware counter visualization data output file is named:
sample_92878.hpm.app.viz

v For a serial program, named app, that is compiled, instrumented for HPM
analysis, and executed with HPC_OUTPUT_NAME set to output/sample,
HPC_UNIQUE_FILE_NAME set to y, and the process ID is 185903:
– A hardware counter ASCII data output file is named:

output_185903/sample.hpm.app.txt

– A hardware counter visualization data output file is named:
output_185903/sample.hpm.app.viz

v For an MPI application, named app, that is compiled, instrumented for HPM
analysis, and executed without using dynamic tasking and with
HPC_OUTPUT_NAME set to sample and HPC_UNIQUE_FILE_NAME not set:
– Hardware counter ASCII data output files are named:

sample_0_0.hpm.app.txt
sample_0_1.hpm.app.txt
sample_0_2.hpm.app.txt
sample_0_3.hpm.app.txt
sample_0_4.hpm.app.txt

– Hardware counter visualization data output files are named:
sample_0_0.hpm.app.viz
sample_0_1.hpm.app.viz
sample_0_2.hpm.app.viz
sample_0_3.hpm.app.viz
sample_0_4.hpm.app.viz

v For an MPI application, named app, that is compiled, instrumented for HPM
analysis, and executed without using dynamic tasking and with
HPC_OUTPUT_NAME set to sample, HPC_UNIQUE_FILE_NAME set to y,
and the process ID is 14150:
– Hardware counter ASCII data output files are named:

sample_14150_0_0.hpm.app.txt
sample_14150_0_1.hpm.app.txt
sample_14150_0_2.hpm.app.txt
sample_14150_0_3.hpm.app.txt
sample_14150_0_4.hpm.app.txt

– Hardware counter visualization data output files are named:
sample_14150_0_0.hpm.app.viz
sample_14150_0_1.hpm.app.viz
sample_14150_0_2.hpm.app.viz
sample_14150_0_3.hpm.app.viz
sample_14150_0_4.hpm.app.viz

Appendix A. Performance data file naming 199

v For an MPI application, named app, that is compiled, instrumented for HPM
analysis, and executed with using dynamic tasking and with
HPC_OUTPUT_NAME set to sample, HPC_UNIQUE_FILE_NAME not set, and
the world ID is 7:
– Hardware counter ASCII data output files are named:

sample_7_0.hpm.app.txt
sample_7_1.hpm.app.txt
sample_7_2.hpm.app.txt
sample_7_3.hpm.app.txt
sample_7_4.hpm.app.txt

– Hardware counter visualization data output files are named:
sample_7_0.hpm.app.viz
sample_7_1.hpm.app.viz
sample_7_2.hpm.app.viz
sample_7_3.hpm.app.viz
sample_7_4.hpm.app.viz

v For an MPI application, named app, that is compiled, instrumented for HPM
analysis, and executed with using dynamic tasking and with
HPC_OUTPUT_NAME set to sample, HPC_UNIQUE_FILE_NAME set to y, the
world ID is 7, and the process ID is 78727:
– Hardware counter ASCII data output files are named:

sample_78727_7_0.hpm.app.txt
sample_78727_7_1.hpm.app.txt
sample_78727_7_2.hpm.app.txt
sample_78727_7_3.hpm.app.txt
sample_78727_7_4.hpm.app.txt

– Hardware counter visualization data output files are named:
sample_78727_7_0.hpm.app.viz
sample_78727_7_1.hpm.app.viz
sample_78727_7_2.hpm.app.viz
sample_78727_7_3.hpm.app.viz
sample_78727_7_4.hpm.app.viz

v For an MPI application that is compiled, linked with the MPI tracing library to
trace all MPI calls, and executed with HPC_OUTPUT_NAME and
HPC_UNIQUE_FILE_NAME not set, the following output file names are
generated. In this case, only output from ranks 0, 1, and 4 was generated: one
for task 0, which also has the median MPI communications time, one for the
task with the minimum MPI communications time, and one for the ask with the
maximum MP communications.
– MPI ASCII data output files named:

hpct_0_0.mpi.txt
hpct_0_1.mpi.txt
hpct_0_4.mpi.txt

– MPI visualization data output files named:
hpct_0_0.mpi.viz
hpct_0_1.mpi.viz
hpct_0_4.mpi.viz

– A single MPI trace data output file named:
hpct_0_0.mpi.mpt

Note: For the same MPI application if HPC_UNIQUE_FILE_NAME is set to y,
and the process ID is 31052, then each output file name that is generated
contains the process ID (processId).
– MPI ASCII data output files named:

200 High Performance Computing Toolkit: Installation and Usage Guide

hpct_31052_0_0.mpi.txt
hpct_31052_0_1.mpi.txt
hpct_31052_0_4.mpi.txt

– MPI visualization data output files named:
hpct_31052_0_0.mpi.viz
hpct_31052_0_1.mpi.viz
hpct_31052_0_4.mpi.viz

– A single MPI trace data output file named:
hpct_31052_0_0.mpi.mpt

Appendix A. Performance data file naming 201

202 High Performance Computing Toolkit: Installation and Usage Guide

Appendix B. Derived metrics, events, and groups supported
on POWER8 architecture

The following topics provide information about:
v “Derived metrics defined for POWER8 architecture”
v “Events and groups supported on POWER8 architecture” on page 204

Derived metrics defined for POWER8 architecture

There are 31 derived metrics that are defined for POWER8 architecture as
described in Table 22:

Table 22. Derived metrics defined for POWER8 architecture

Number Derived metric Description

0 Utilization rate Utilization rate =
100.0 * user_time / wall_clock_time

1 MIPS MIPS =
PM_INST_CMPL * 0.000001 / wall_clock_time

2 Instructions per cycle Instructions per cycle =
(double)PM_INST_CMPL / PM_CYC

3 Instructions per run cycle Instructions per run cycle =
(double)PM_RUN_INST_CMPL / PM_RUN_CYC

4 Percentage Instructions dispatched
that completed

Percentage Instructions dispatched that completed =
100.0 * PM_INST_CMPL / PM_INST_DISP

5 Branches mispredicted percentage Branches mispredicted percentage =
PM_BR_MPRED_CMPL / PM_RUN_INST_CMPL * 100

6 Total Loads from local L2 Total Loads from local L2 =
tot_ld_l_L2 = (double)PM_DATA_FROM_L2 / (1024*1024)

7 Local L2 load traffic Local L2 load traffic =
L1_cache_line_size * tot_ld_l_L2

8 Local L2 load bandwidth per
processor

Local L2 load bandwidth per processor =
L1_cache_line_size * tot_ld_l_L2 / wall_clock_time

9 Percentage loads from local L2 per
cycle

Percentage loads from local L2 per cycle =
100.0 *(double)PM_DATA_FROM_L2 / PM_RUN_CYC

10 Total Loads from local L3 Total Loads from local L3 =
tot_ld_l_L3 = (double)PM_DATA_FROM_L3 / (1024*1024)

11 Local L3 load traffic Local L3 load traffic =
L2_cache_line_size * tot_ld_l_L3

12 Local L3 load bandwidth per
processor

Local L3 load bandwidth per processor =
L2_cache_line_size * tot_ld_l_L3 / wall_clock_time

13 Percentage loads from local L3 per
cycle

Percentage loads from local L3 per cycle =
100.0 *(double)PM_DATA_FROM_L3 / PM_RUN_CYC

14 Total Loads from memory Total Loads from memory =
tot_ld_mem = (PM_DATA_FROM_RMEM + PM_DATA_FROM_LMEM) / (1024*1024)

15 Memory load traffic Memory load traffic =
L3_cache_line_size * tot_ld_mem

16 Memory load bandwidth per
processor

Memory load bandwidth per processor =
L3_cache_line_size * tot_ld_mem / wall_clock_time

17 Total Loads from local memory Total Loads from local memory =
tot_ld_lmem = (double)PM_DATA_FROM_LMEM / (1024*1024)

18 Local memory load traffic Local memory load traffic =
L3_cache_line_size * tot_ld_lmem

© Copyright IBM Corp. 2008, 2015 203

Table 22. Derived metrics defined for POWER8 architecture (continued)

Number Derived metric Description

19 Local memory load bandwidth per
processor

Local memory load bandwidth per processor =
L3_cache_line_size * tot_ld_lmem / wall_clock_time

20 CPU Utilization CPU Utilization =
PM_RUN_CYC / PM_CYC * 100

21 Instruction cache miss rate (per run
instruction)

Instruction cache miss rate (per run instruction) =
PM_L1_ICACHE_MISS / PM_RUN_INST_CMPL * 100

22 Completion Stall Cycles Completion Stall Cycles =
PM_CMPLU_STALL / PM_RUN_INST_CMPL

23 Cycles stalled by FXU Cycles stalled by FXU =
PM_CMPLU_STALL_FXU / PM_RUN_INST_CMPL

24 Cycles stalled by VSU Scalar
Operations

Cycles stalled by VSU Scalar Operations =
PM_CMPLU_STALL_SCALAR / PM_RUN_INST_CMPL

25 Cycles stalled by VSU Scalar Long
Operations

Cycles stalled by VSU Scalar Long Operations =
PM_CMPLU_STALL_SCALAR_LONG / PM_RUN_INST_CMPL

26 Cycles stalled by VSU Vector
Operations

Cycles stalled by VSU Vector Operations =
PM_CMPLU_STALL_VECTOR / PM_RUN_INST_CMPL

27 Cycles stalled by LSU Cycles stalled by LSU =
PM_CMPLU_STALL_LSU / PM_RUN_INST_CMPL

28 Cycles stalled by LSU Rejects Cycles stalled by LSU Rejects =
PM_CMPLU_STALL_REJECT / PM_RUN_INST_CMPL

29 Cycles stalled by ERAT Translation
rejects

Cycles stalled by ERAT Translation rejects =
PM_CMPLU_STALL_ERAT_MISS / PM_RUN_INST_CMPL

30 Cycles stalled by D-Cache Misses Cycles stalled by D-Cache Misses =
PM_CMPLU_STALL_DCACHE_MISS / PM_RUN_INST_CMPL

Events and groups supported on POWER8 architecture
On Linux POWER8, the number of CPU groups supported is 267. The following
tables list the supported event groups listed by group ID number.

Group 0

Event Description

PM_CYC Cycles

PM_RUN_CYC Run cycles

PM_INST_DISP PPC Dispatched

PM_INST_CMPL Number of PowerPC® Instructions that completed. PPC
Instructions Finished (completed.

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 1

Event Description

PM_RUN_SPURR Run SPURR

PM_RUN_CYC Run cycles

PM_CYC Cycles

PM_RUN_PURR Run_PURR

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 2

204 High Performance Computing Toolkit: Installation and Usage Guide

Event Description

PM_IOPS_CMPL Internal Operations completed

PM_CYC Cycles

PM_IOPS_DISP Internal Operations dispatched

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed.

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 3

Event Description

PM_RUN_CYC_ST_MODE Cycles run latch is set and core is in ST mode

PM_RUN_CYC_SMT2_SHRD_MODE Cycles this threads run latch is set and the core is in
SMT2 shared mode

PM_RUN_CYC_SMT2_MODE Cycles run latch is set and core is in SMT2 mode

PM_RUN_CYC_SMT8_MODE Cycles run latch is set and core is in SMT8 mode

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 4

Event Description

PM_RUN_CYC_SMT2_SPLIT_MODE Cycles run latch is set and core is in SMT2 split mode

PM_RUN_CYC_SMT4_MODE Cycles this threads run latch is set and the core is in
SMT4 mode

PM_RUN_CYC_SMT2_MODE Cycles run latch is set and core is in SMT2 mode

PM_RUN_CYC_SMT8_MODE Cycles run latch is set and core is in SMT8 mode

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 5

Event Description

PM_THRD_GRP_CMPL_BOTH_CYC Cycles group completed on both completion slots by any
thread

PM_THRD_ALL_RUN_CYC All Threads in run_cycles (was both threads in
run_cycles)

PM_THRD_CONC_RUN_INST PPC Instructions Finished when both threads in
run_cycles

PM_THRD_PRIO_0_1_CYC Cycles thread running at priority level 0 or 1

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 6

Event Description

PM_THRD_PRIO_0_1_CYC Cycles thread running at priority level 0 or 1

PM_THRD_PRIO_2_3_CYC Cycles thread running at priority level 2 or 3

PM_THRD_PRIO_4_5_CYC Cycles thread running at priority level 4 or 5

PM_THRD_PRIO_6_7_CYC Cycles thread running at priority level 6 or 7

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Appendix B. Derived metrics, events, and groups supported on POWER8 architecture 205

Group 7

Event Description

PM_ANY_THRD_RUN_CYC One of threads in run_cycles

PM_THRD_REBAL_CYC Cycles rebalance was active

PM_NEST_REF_CLK Multiply by 4 to obtain the number of PB cycles

PM_RUN_INST_CMPL Run instructions

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 8

Event Description

PM_BR_PRED_BR0 Conditional Branch Completed on BR0 (1st branch in
group) in which the HW predicted the Direction or
Target

PM_BR_PRED_BR1 Conditional Branch Completed on BR1 (2nd branch in
group) in which the HW predicted the Direction or
Target. Note: BR1 can only be used in Single Thread
Mode. In all of the SMT modes, only one branch can
complete, thus BR1 is unused.

PM_BR_UNCOND_BR0 Unconditional Branch Completed on BR0. HW branch
prediction was not used for this branch. This can be an I
form branch, a B form branch with BO field set to branch
always, or a B form branch which was converted to a
Resolve.

PM_BR_UNCOND_BR1 Unconditional Branch Completed on BR1. HW branch
prediction was not used for this branch. This can be an I
form branch, a B form branch with BO field set to branch
always, or a B form branch which was converted to a
Resolve.

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 9

Event Description

PM_BR_PRED_CCACHE_BR0 Conditional Branch Completed on BR0 that used the
Count Cache for Target Prediction

PM_BR_PRED_CCACHE_BR1 Conditional Branch Completed on BR1 that used the
Count Cache for Target Prediction

PM_BR_PRED_LSTACK_BR0 Conditional Branch Completed on BR0 that used the Link
Stack for Target Prediction

PM_BR_PRED_LSTACK_BR1 Conditional Branch Completed on BR1 that used the Link
Stack for Target Prediction

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 10

Event Description

PM_BR_PRED_CR_BR0 Conditional Branch Completed on BR0 that had its
direction predicted. I form branches do not set this event.
In addition, B form branches which do not use the BHT
do not set this event these are branches with BO field set
to 'always taken' and branches

PM_BR_PRED_CR_BR1 Conditional Branch Completed on BR1 that had its
direction predicted. I form branches do not set this event.
In addition, B form branches which do not use the BHT
do not set this event these are branches with BO field set
to 'always taken' and branches

206 High Performance Computing Toolkit: Installation and Usage Guide

Event Description

PM_BR_PRED_TA_BR0 Conditional Branch Completed on BR0 that had its target
address predicted. Only XL form branches set this event.

PM_BR_PRED_TA_BR1 Conditional Branch Completed on BR1 that had its target
address predicted. Only XL form branches set this event.

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 11

Event Description

PM_BRU_FIN Branch Instruction Finished

PM_BR_TAKEN_CMPL New event for Branch Taken

PM_BR_PRED_BR_CMPL Completion Time Event. This event can also be calculated
from the direct bus as follows: if_pc_br0_br_pred(0) OR
if_pc_br0_br_pred(1).

PM_BR_CMPL Branch Instruction completed

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 12

Event Description

PM_BR_BC_8_CONV Pairable BC+8 branch that was converted to a Resolve
Finished in the BRU pipeline.

PM_BR_BC_8 Pairable BC+8 branch that has not been converted to a
Resolve Finished in the BRU pipeline

PM_BR_UNCOND_BR0 Unconditional Branch Completed on BR0. HW branch
prediction was not used for this branch. This can be an I
form branch, a B form branch with BO field set to branch
always, or a B form branch which was converted to a
Resolve.

PM_BR_2PATH Two path branch

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 13

Event Description

PM_BR_MPRED_LSTACK Conditional Branch Completed that was Mispredicted
due to the Link Stack Target Prediction

PM_BR_MPRED_CCACHE Conditional Branch Completed that was Mispredicted
due to the Count Cache Target Prediction

PM_BR_MPRED_CR Conditional Branch Completed that was Mispredicted
due to the BHT Direction Prediction (taken/not taken).

PM_BR_MPRED_TA Conditional Branch Completed that was Mispredicted
due to the Target Address Prediction from the Count
Cache or Link Stack. Only XL form branches that
resolved Taken set this event.

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 14

Event Description

PM_FLUSH_DISP_SYNC Dispatch flush: Sync

PM_FLUSH_BR_MPRED Flush caused by branch mispredict

Appendix B. Derived metrics, events, and groups supported on POWER8 architecture 207

Event Description

PM_FLUSH_DISP_SB Dispatch Flush: Scoreboard

PM_FLUSH Flush (any type)

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 15

Event Description

PM_FLUSH_DISP Dispatch flush

PM_FLUSH_PARTIAL Partial flush

PM_FLUSH_COMPLETION Completion Flush

PM_BR_MPRED_CMPL Number of Branch Mispredicts

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 16

Event Description

PM_DTLB_MISS_16G Data TLB Misses, page size 16G

PM_DTLB_MISS_4K Data TLB Misses, page size 4k

PM_DTLB_MISS_64K Data TLB Miss page size 64K

PM_DTLB_MISS_16M Data TLB Miss page size 16M

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 17

Event Description

PM_DERAT_MISS_4K Data ERAT Miss (Data TLB Access) page size 4K

PM_DERAT_MISS_64K Data ERAT Miss (Data TLB Access) page size 64K

PM_DERAT_MISS_16M Data ERAT Miss (Data TLB Access) page size 16M

PM_DERAT_MISS_16G Data ERAT Miss (Data TLB Access) page size 16G

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 18

Event Description

PM_FLUSH_DISP_SYNC Dispatch flush: Sync

PM_FLUSH_DISP_TLBIE Dispatch Flush: TLBIE

PM_FLUSH_DISP_SB Dispatch Flush: Scoreboard

PM_FLUSH Flush (any type)

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 19

Event Description

PM_FLUSH_DISP Dispatch flush

PM_CYC Cycles

PM_FLUSH_COMPLETION Completion Flush

208 High Performance Computing Toolkit: Installation and Usage Guide

Event Description

PM_FLUSH Flush (any type)

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 20

Event Description

PM_FXU_IDLE FXU0 idle and FXU1 idle

PM_FXU_BUSY FXU0 busy and FXU1 busy.

PM_FXU0_BUSY_FXU1_IDLE FXU0 busy and FXU1 idle

PM_FXU1_BUSY_FXU0_IDLE FXU0 idle and FXU1 busy.

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 21

Event Description

PM_FXU0_FIN The fixed point unit Unit 0 finished an instruction.
Instructions that finish may not necessary complete.

PM_RUN_CYC Run cycles

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_FXU1_FIN FXU1 finished

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 22

Event Description

PM_CYC Cycles

PM_FXU_BUSY FXU0 busy and FXU1 busy.

PM_FXU0_BUSY_FXU1_IDLE FXU0 busy and FXU1 idle

PM_FXU1_BUSY_FXU0_IDLE FXU0 idle and FXU1 busy.

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 23

Event Description

PM_FXU_IDLE FXU0 idle and FXU1 idle

PM_FXU_BUSY FXU0 busy and FXU1 busy.

PM_CYC Cycles

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 24

Event Description

PM_DISP_CLB_HELD_BAL Dispatch/CLB Hold: Balance

PM_DISP_CLB_HELD_RES Dispatch/CLB Hold: Resource

Appendix B. Derived metrics, events, and groups supported on POWER8 architecture 209

Event Description

PM_DISP_CLB_HELD_TLBIE Dispatch Hold: Due to TLBIE

PM_DISP_CLB_HELD_SYNC Dispatch/CLB Hold: Sync type instruction

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 25

Event Description

PM_DISP_CLB_HELD_SB Dispatch/CLB Hold: Scoreboard

PM_DISP_HELD_IQ_FULL Dispatch held due to Issue q full

PM_DISP_HELD_SRQ_FULL Dispatch held due SRQ no room

PM_DISP_HELD_SYNC_HOLD Dispatch held due to SYNC hold

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 26

Event Description

PM_DISP_HELD_MAP_FULL Dispatch for this thread was held because the Mappers
were full

PM_INST_DISP PPC Dispatched

PM_GRP_DISP Group dispatch

PM_1PLUS_PPC_DISP Cycles at least one Instr Dispatched

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 27

Event Description

PM_1PLUS_PPC_CMPL 1 or more ppc instructions finished

PM_NTCG_ALL_FIN Cycles after all instructions have finished to group
completed

PM_GRP_CMPL Group completed

PM_CYC Cycles

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 28

Event Description

PM_CMPLU_STALL Completion stall

PM_CMPLU_STALL_FXU Completion stall due to FXU

PM_CMPLU_STALL_FLUSH Completion stall due to flush by own thread

PM_SHL_ST_DISABLE Store Hit Load Table Read Hit with entry Disabled (entry
was disabled due to the entry shown to not prevent the
flush)

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 29

210 High Performance Computing Toolkit: Installation and Usage Guide

Event Description

PM_CMPLU_STALL_THRD Completion Stalled due to thread conflict. Group ready to
complete but it was another thread's turn

PM_CMPLU_STALL_BRU_CRU Completion stall due to IFU

PM_CMPLU_STALL_COQ_FULL Completion stall due to CO q full

PM_CMPLU_STALL_BRU Completion stall due to a Branch Unit

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 30

Event Description

PM_DATA_FROM_L2 The processor's data cache was reloaded from local core's
L2 due to a demand load

PM_CMPLU_STALL_DCACHE_MISS Completion stall by Dcache miss

PM_CMPLU_STALL_HWSYNC Completion stall due to hwsync

PM_CMPLU_STALL_DMISS_L2L3_CONFLICT Completion stall due to cache miss that resolves in the L2
or L3 with a conflict

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 31

Event Description

PM_DATA_FROM_L3_NO_CONFLICT The processor's data cache was reloaded from local core's
L3 without conflict due to a demand load

PM_CMPLU_STALL_DMISS_L21_L31 Completion stall by Dcache miss which resolved on chip
(excluding local L2/L3)

PM_CMPLU_STALL_MEM_ECC_DELAY Completion stall due to memory ECC delay

PM_CMPLU_STALL_DMISS_L3MISS Completion stall due to cache miss resolving missed the
L3

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 32

Event Description

PM_DISP_HELD Dispatch Held

PM_CMPLU_STALL_DMISS_L2L3 Completion stall by Dcache miss which resolved in
L2/L3

PM_CMPLU_STALL_OTHER_CMPL Instructions core completed while this tread was stalled

PM_CMPLU_STALL_DMISS_LMEM Completion stall due to cache miss that resolves in local
memory

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 33

Event Description

PM_FLOP Floating Point Operation Finished

PM_CMPLU_STALL_DMISS_REMOTE Completion stall by Dcache miss which resolved from
remote chip (cache or memory)

PM_DISP_WT Dispatched Starved

PM_CMPLU_STALL_ERAT_MISS Completion stall due to LSU reject ERAT miss

PM_RUN_INST_CMPL Run instructions

Appendix B. Derived metrics, events, and groups supported on POWER8 architecture 211

Event Description

PM_RUN_CYC Run cycles

Group 34

Event Description

PM_GCT_NOSLOT_CYC Pipeline empty (No itags assigned , no GCT slots used)

PM_CMPLU_STALL_LSU Completion stall by LSU instruction

PM_FXU0_BUSY_FXU1_IDLE FXU0 busy and FXU1 idle

PM_CMPLU_STALL_FXLONG Completion stall due to a long latency fixed point
instruction

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 35

Event Description

PM_DATA_ALL_PUMP_CPRED Pump prediction correct. Counts across all types of
pumps for either demand loads or data prefetch

PM_CMPLU_STALL_NTCG_FLUSH Completion stall due to ntcg flush

PM_L3_CO_MEPF L3 castouts in Mepf state

PM_CMPLU_STALL_LOAD_FINISH Completion stall due to a Load finish

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 36

Event Description

PM_IC_DEMAND_CYC Cycles when a demand ifetch was pending

PM_CMPLU_STALL_REJECT_LHS Completion stall due to reject (load hit store)

PM_L3_SW_PREF Data stream touch to L3

PM_CMPLU_STALL_REJECT Completion stall due to LSU reject

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 37

Event Description

PM_L1_DCACHE_RELOADED_ALL L1 data cache reloaded for demand or prefetch

PM_CMPLU_STALL_SCALAR_LONG Completion stall due to VSU scalar long latency
instruction

PM_LSU_LMQ_SRQ_EMPTY_ALL_CYC ALL threads lsu empty (lmq and srq empty)

PM_CMPLU_STALL_REJ_LMQ_FULL Completion stall due to LSU reject LMQ full

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 38

Event Description

PM_L2_TM_REQ_ABORT TM abort

PM_CMPLU_STALL_STORE Completion stall by stores this includes store agen
finishes in pipe LS0/LS1 and store data finishes in
LS2/LS3

212 High Performance Computing Toolkit: Installation and Usage Guide

Event Description

PM_MRK_STALL_CMPLU_CYC Marked Group completion Stall

PM_CMPLU_STALL_SCALAR Completion stall due to VSU scalar instruction

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 39

Event Description

PM_L3_CO_MEPF L3 castouts in Mepf state

PM_CMPLU_STALL_VECTOR Completion stall due to VSU vector instruction

PM_MRK_ST_CMPL Marked store completed and sent to nest

PM_CMPLU_STALL_ST_FWD Completion stall due to store forward

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 40

Event Description

PM_L3_LD_PREF L3 Load Prefetches

PM_CMPLU_STALL_VSU Completion stall due to VSU instruction

PM_ST_MISS_L1 Store Missed L1

PM_CMPLU_STALL_VECTOR_LONG Completion stall due to VSU vector long instruction

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 41

Event Description

PM_LSU0_REJECT LSU0 reject

PM_GCT_NOSLOT_DISP_HELD_ISSQ Gct empty for this thread due to dispatch hold on this
thread due to Issue q full

PM_IFU_L2_TOUCH L2 touch to update MRU on a line

PM_GCT_NOSLOT_BR_MPRED Gct empty for this thread due to branch mispredict

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 42

Event Description

PM_LSU_REJECT_LMQ_FULL LSU reject due to LMQ full (4 per cycle)

PM_GCT_NOSLOT_DISP_HELD_OTHER Gct empty for this thread due to dispatch hold on this
thread due to sync

PM_LSU_FIN LSU Finished an instruction (up to 2 per cycle)

PM_GCT_NOSLOT_BR_MPRED_ICMISS Gct empty for this thread due to Icache Miss and branch
mispredict

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 43

Appendix B. Derived metrics, events, and groups supported on POWER8 architecture 213

Event Description

PM_DATA_PUMP_CPRED Pump prediction correct. Counts across all types of
pumps for a demand load

PM_GCT_NOSLOT_DISP_HELD_SRQ Gct empty for this thread due to dispatch hold on this
thread due to SRQ full

PM_FLUSH_LSU Flush initiated by LSU

PM_GCT_NOSLOT_DISP_HELD_MAP Gct empty for this thread due to dispatch hold on this
thread due to Mapper full

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 44

Event Description

PM_MRK_ST_CMPL Marked store completed and sent to nest

PM_GCT_NOSLOT_IC_MISS Gct empty for this thread due to Icache Miss

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_GCT_NOSLOT_IC_L3MISS Gct empty for this thread due to icach L3 miss

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 45

Event Description

PM_MEM_LOC_THRESH_IFU Local Memory above threshold for IFU speculation
control

PM_CMPLU_STALL_NO_NTF Completion stall due to nop

PM_L1_DCACHE_RELOAD_VALID DL1 reloaded due to Demand Load

PM_DATA_FROM_OFF_CHIP_CACHE The processor's data cache was reloaded either shared or
modified data from another core's L2/L3 on a different
chip (remote or distant) due to a demand load

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 46

Event Description

PM_CMPLU_STALL_LWSYNC Completion stall due to isync/lwsync

PM_MEM_PREF Memory prefetch for this lpar. Includes L4

PM_UP_PREF_L3 Micropartition prefetch

PM_UP_PREF_POINTER Micropartition pointer prefetches

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 47

Event Description

PM_DC_PREF_STREAM_ALLOC Stream marked valid. The stream could have been
allocated through the hardware prefetch mechanism or
through software. This is combined LS0 and LS1

PM_DC_PREF_STREAM_CONF A demand load referenced a line in an active prefetch
stream. The stream could have been allocated through
the hardware prefetch mechanism or through software.
Combine up + down

214 High Performance Computing Toolkit: Installation and Usage Guide

Event Description

PM_DC_PREF_STREAM_STRIDED_CONF A demand load referenced a line in an active strided
prefetch stream. The stream could have been allocated
through the hardware prefetch mechanism or through
software.

PM_DC_PREF_STREAM_FUZZY_CONF A demand load referenced a line in an active fuzzy
prefetch stream. The stream could have been allocated
through the hardware prefetch mechanism or through
software. Fuzzy stream confirm (out of order effects, or
pf cant keep up)

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 48

Event Description

PM_LD_CMPL Count of Loads completed

PM_L3_ST_PREF L3 store Prefetches

PM_L3_SW_PREF Data stream touch to L3

PM_L3_PREF_ALL Total HW L3 prefetches(Load+store)

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 49

Event Description

PM_DATA_FROM_L2 The processor's data cache was reloaded from local core's
L2 due to a demand load

PM_DATA_FROM_L2MISS Demand LD L2 Miss (not L2 hit)

PM_DATA_FROM_L3MISS Demand LD L3 Miss (not L2 hit and not L3 hit)

PM_DATA_FROM_L3 The processor's data cache was reloaded from local core's
L3 due to a demand load

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 50

Event Description

PM_DATA_FROM_L2_NO_CONFLICT The processor's data cache was reloaded from local core's
L2 without conflict due to a demand load

PM_DATA_FROM_L2_MEPF The processor's data cache was reloaded from local core's
L2 hit without dispatch conflicts on Mepf state due to a
demand load

PM_DATA_FROM_L2_DISP_CONFLICT_LDHITST The processor's data cache was reloaded from local core's
L2 with load hit store conflict due to a demand load

PM_DATA_FROM_L2_DISP_CONFLICT_OTHER The processor's data cache was reloaded from local core's
L2 with dispatch conflict due to a demand load

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 51

Event Description

PM_DATA_FROM_L3_NO_CONFLICT The processor's data cache was reloaded from local core's
L3 without conflict due to a demand load

Appendix B. Derived metrics, events, and groups supported on POWER8 architecture 215

Event Description

PM_DATA_FROM_L3_MEPF The processor's data cache was reloaded from local core's
L3 without dispatch conflicts hit on Mepf state due to a
demand load

PM_DATA_FROM_L3_DISP_CONFLICT The processor's data cache was reloaded from local core's
L3 with dispatch conflict due to a demand load

PM_DATA_FROM_L3MISS_MOD The processor's data cache was reloaded from a location
other than the local core's L3 due to a demand load

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 52

Event Description

PM_DATA_FROM_L31_SHR The processor's data cache was reloaded with Shared (S)
data from another core's L3 on the same chip due to a
demand load

PM_DATA_FROM_L31_MOD The processor's data cache was reloaded with Modified
(M) data from another core's L3 on the same chip due to
a demand load

PM_DATA_FROM_L31_ECO_SHR The processor's data cache was reloaded with Shared (S)
data from another core's ECO L3 on the same chip due to
a demand load

PM_DATA_FROM_L31_ECO_MOD The processor's data cache was reloaded with Modified
(M) data from another core's ECO L3 on the same chip
due to a demand load

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 53

Event Description

PM_DATA_FROM_L2MISS_MOD The processor's data cache was reloaded from a location
other than the local core's L2 due to a demand load

PM_DATA_FROM_LMEM The processor's data cache was reloaded from the local
chip's Memory due to a demand load

PM_DATA_FROM_RMEM The processor's data cache was reloaded from another
chip's memory on the same Node or Group (Remote)
due to a demand load

PM_DATA_FROM_DMEM The processor's data cache was reloaded from another
chip's memory on the same Node or Group (Distant) due
to a demand load

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 54

Event Description

PM_DATA_FROM_ON_CHIP_CACHE The processor's data cache was reloaded either shared or
modified data from another core's L2/L3 on the same
chip due to a demand load

PM_DATA_FROM_RL2L3_MOD The processor's data cache was reloaded with Modified
(M) data from another chip's L2 or L3 on the same Node
or Group (Remote), as this chip due to a demand load

PM_DATA_FROM_L21_SHR The processor's data cache was reloaded with Shared (S)
data from another core's L2 on the same chip due to a
demand load

PM_DATA_FROM_L21_MOD The processor's data cache was reloaded with Modified
(M) data from another core's L2 on the same chip due to
a demand load

216 High Performance Computing Toolkit: Installation and Usage Guide

Event Description

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 55

Event Description

PM_DATA_FROM_LL4 The processor's data cache was reloaded from the local
chip's L4 cache due to a demand load

PM_DATA_FROM_RL4 The processor's data cache was reloaded from another
chip's L4 on the same Node or Group (Remote) due to a
demand load

PM_DATA_FROM_DL4 The processor's data cache was reloaded from another
chip's L4 on a different Node or Group (Distant) due to a
demand load

PM_DATA_FROM_MEM The processor's data cache was reloaded from a memory
location including L4 from local remote or distant due to
a demand load

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 56

Event Description

PM_DATA_FROM_RL2L3_SHR The processor's data cache was reloaded with Shared (S)
data from another chip's L2 or L3 on the same Node or
Group (Remote), as this chip due to a demand load

PM_DATA_FROM_MEMORY The processor's data cache was reloaded from a memory
location including L4 from local remote or distant due to
a demand load

PM_DATA_FROM_DL2L3_SHR The processor's data cache was reloaded with Shared (S)
data from another chip's L2 or L3 on a different Node or
Group (Distant), as this chip due to a demand load

PM_DATA_FROM_DL2L3_MOD The processor's data cache was reloaded with Modified
(M) data from another chip's L2 or L3 on a different
Node or Group (Distant), as this chip due to a demand
load

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 57

Event Description

PM_DATA_ALL_FROM_L2 The processor's data cache was reloaded from local core's
L2 due to either demand loads or data prefetch

PM_FLOP_SUM_SCALAR Flops summary scalar instructions

PM_FLOP_SUM_VEC Flops summary vector instructions

PM_DATA_ALL_FROM_L3 The processor's data cache was reloaded from local core's
L3 due to either demand loads or data prefetch

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 58

Event Description

PM_DATA_ALL_FROM_L2_NO_CONFLICT The processor's data cache was reloaded from local core's
L2 without conflict due to either demand loads or data
prefetch

Appendix B. Derived metrics, events, and groups supported on POWER8 architecture 217

Event Description

PM_DATA_ALL_FROM_L2_MEPF The processor's data cache was reloaded from local core's
L2 hit without dispatch conflicts on Mepf state due to
either demand loads or data prefetch

PM_DATA_ALL_FROM_L2_DISP_CONFLICT_LDHITST The processor's data cache was reloaded from local core's
L2 with load hit store conflict due to either demand loads
or data prefetch

PM_DATA_ALL_FROM_L2_DISP_CONFLICT_OTHER The processor's data cache was reloaded from local core's
L2 with dispatch conflict due to either demand loads or
data prefetch

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 59

Event Description

PM_DATA_ALL_FROM_L3_NO_CONFLICT The processor's data cache was reloaded from local core's
L3 without conflict due to either demand loads or data
prefetch

PM_DATA_ALL_FROM_L3_MEPF The processor's data cache was reloaded from local core's
L3 without dispatch conflicts hit on Mepf state due to
either demand loads or data prefetch

PM_DATA_ALL_FROM_L3_DISP_CONFLICT The processor's data cache was reloaded from local core's
L3 with dispatch conflict due to either demand loads or
data prefetch

PM_DATA_ALL_FROM_L3MISS_MOD The processor's data cache was reloaded from a location
other than the local core's L3 due to either demand loads
or data prefetch

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 60

Event Description

PM_DATA_ALL_FROM_L31_SHR The processor's data cache was reloaded with Shared (S)
data from another core's L3 on the same chip due to
either demand loads or data prefetch

PM_DATA_ALL_FROM_L31_MOD The processor's data cache was reloaded with Modified
(M) data from another core's L3 on the same chip due to
either demand loads or data prefetch

PM_DATA_ALL_FROM_L31_ECO_SHR The processor's data cache was reloaded with Shared (S)
data from another core's ECO L3 on the same chip due to
either demand loads or data prefetch

PM_DATA_ALL_FROM_L31_ECO_MOD The processor's data cache was reloaded with Modified
(M) data from another core's ECO L3 on the same chip
due to either demand loads or data prefetch

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 61

Event Description

PM_DATA_ALL_FROM_L2MISS_MOD The processor's data cache was reloaded from a location
other than the local core's L2 due to either demand loads
or data prefetch

PM_DATA_ALL_FROM_LMEM The processor's data cache was reloaded from the local
chip's Memory due to either demand loads or data
prefetch

PM_DATA_ALL_FROM_RMEM The processor's data cache was reloaded from another
chip's memory on the same Node or Group (Remote)
due to either demand loads or data prefetch

218 High Performance Computing Toolkit: Installation and Usage Guide

Event Description

PM_DATA_ALL_FROM_DMEM The processor's data cache was reloaded from another
chip's memory on the same Node or Group (Distant) due
to either demand loads or data prefetch

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 62

Event Description

PM_DATA_ALL_FROM_ON_CHIP_CACHE The processor's data cache was reloaded either shared or
modified data from another core's L2/L3 on the same
chip due to either demand loads or data prefetch

PM_DATA_ALL_FROM_RL2L3_MOD The processor's data cache was reloaded with Modified
(M) data from another chip's L2 or L3 on the same Node
or Group (Remote), as this chip due to either demand
loads or data prefetch

PM_DATA_ALL_FROM_L21_SHR The processor's data cache was reloaded with Shared (S)
data from another core's L2 on the same chip due to
either demand loads or data prefetch

PM_DATA_ALL_FROM_L21_MOD The processor's data cache was reloaded with Modified
(M) data from another core's L2 on the same chip due to
either demand loads or data prefetch

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 63

Event Description

PM_DATA_ALL_FROM_LL4 The processor's data cache was reloaded from the local
chip's L4 cache due to either demand loads or data
prefetch

PM_DATA_ALL_FROM_RL4 The processor's data cache was reloaded from another
chip's L4 on the same Node or Group (Remote) due to
either demand loads or data prefetch

PM_DATA_ALL_FROM_DL4 The processor's data cache was reloaded from another
chip's L4 on a different Node or Group (Distant) due to
either demand loads or data prefetch

PM_DATA_ALL_FROM_OFF_CHIP_CACHE The processor's data cache was reloaded either shared or
modified data from another core's L2/L3 on a different
chip (remote or distant) due to either demand loads or
data prefetch

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 64

Event Description

PM_DATA_ALL_FROM_RL2L3_SHR The processor's data cache was reloaded with Shared (S)
data from another chip's L2 or L3 on the same Node or
Group (Remote), as this chip due to either demand loads
or data prefetch

PM_DATA_ALL_FROM_MEMORY The processor's data cache was reloaded from a memory
location including L4 from local remote or distant due to
either demand loads or data prefetch

PM_DATA_ALL_FROM_DL2L3_SHR The processor's data cache was reloaded with Shared (S)
data from another chip's L2 or L3 on a different Node or
Group (Distant), as this chip due to either demand loads
or data prefetch

Appendix B. Derived metrics, events, and groups supported on POWER8 architecture 219

Event Description

PM_DATA_ALL_FROM_DL2L3_MOD The processor's data cache was reloaded with Modified
(M) data from another chip's L2 or L3 on a different
Node or Group (Distant), as this chip due to either
demand loads or data prefetch

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 65

Event Description

PM_INST_FROM_L2 The processor's Instruction cache was reloaded from local
core's L2 due to an instruction fetch (not prefetch)

PM_INST_FROM_L2_MEPF The processor's Instruction cache was reloaded from local
core's L2 hit without dispatch conflicts on Mepf state.
due to an instruction fetch (not prefetch)

PM_INST_FROM_L2_DISP_CONFLICT_LDHITST The processor's Instruction cache was reloaded from local
core's L2 with load hit store conflict due to an instruction
fetch (not prefetch)

PM_INST_FROM_L2_DISP_CONFLICT_OTHER The processor's Instruction cache was reloaded from local
core's L2 with dispatch conflict due to an instruction
fetch (not prefetch)

PM_RUN_INST_CMPL Run instructions

PM_RUN_CY Run cycles

Group 66

Event Description

PM_INST_FROM_L2_NO_CONFLICT The processor's Instruction cache was reloaded from local
core's L2 without conflict due to an instruction fetch (not
prefetch)

PM_INST_FROM_L31_MOD The processor's Instruction cache was reloaded with
Modified (M) data from another core's L3 on the same
chip due to an instruction fetch (not prefetch)

PM_INST_FROM_L21_SHR The processor's Instruction cache was reloaded with
Shared (S) data from another core's L2 on the same chip
due to an instruction fetch (not prefetch)

PM_INST_FROM_L21_MOD The processor's Instruction cache was reloaded with
Modified (M) data from another core's L2 on the same
chip due to an instruction fetch (not prefetch)

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 67

Event Description

PM_INST_FROM_L3_NO_CONFLICT The processor's Instruction cache was reloaded from local
core's L3 without conflict due to an instruction fetch (not
prefetch)

PM_INST_FROM_L3_MEPF The processor's Instruction cache was reloaded from local
core's L3 without dispatch conflicts hit on Mepf state.
due to an instruction fetch (not prefetch)

PM_INST_FROM_L3_DISP_CONFLICT The processor's Instruction cache was reloaded from local
core's L3 with dispatch conflict due to an instruction
fetch (not prefetch)

PM_INST_FROM_L3 The processor's Instruction cache was reloaded from local
core's L3 due to an instruction fetch (not prefetch)

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

220 High Performance Computing Toolkit: Installation and Usage Guide

Group 68

Event Description

PM_INST_FROM_L2MISS The processor's Instruction cache was reloaded from a
location other than the local core's L2 due to an
instruction fetch (not prefetch)

PM_INST_FROM_MEMORY The processor's Instruction cache was reloaded from a
memory location including L4 from local remote or
distant due to an instruction fetch (not prefetch)

PM_INST_FROM_L3MISS Marked instruction was reloaded from a location beyond
the local chiplet

PM_INST_FROM_L3MISS_MOD The processor's Instruction cache was reloaded from a
location other than the local core's L3 due to a instruction
fetch

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 69

Event Description

PM_INST_FROM_L31_SHR The processor's Instruction cache was reloaded with
Shared (S) data from another core's L3 on the same chip
due to an instruction fetch (not prefetch)

PM_INST_FROM_RL2L3_MOD The processor's Instruction cache was reloaded with
Modified (M) data from another chip's L2 or L3 on the
same Node or Group (Remote), as this chip due to an
instruction fetch (not prefetch)

PM_INST_FROM_L31_ECO_SHR The processor's Instruction cache was reloaded with
Shared (S) data from another core's ECO L3 on the same
chip due to an instruction fetch (not prefetch)

PM_INST_FROM_L31_ECO_MOD The processor's Instruction cache was reloaded with
Modified (M) data from another core's ECO L3 on the
same chip due to an instruction fetch (not prefetch)

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 70

Event Description

PM_INST_FROM_ON_CHIP_CACHE The processor's Instruction cache was reloaded either
shared or modified data from another core's L2/L3 on
the same chip due to an instruction fetch (not prefetch)

PM_INST_FROM_LMEM The processor's Instruction cache was reloaded from the
local chip's Memory due to an instruction fetch (not
prefetch)

PM_INST_FROM_RMEM The processor's Instruction cache was reloaded from
another chip's memory on the same Node or Group (
Remote) due to an instruction fetch (not prefetch)

PM_INST_FROM_OFF_CHIP_CACHE The processor's Instruction cache was reloaded either
shared or modified data from another core's L2/L3 on a
different chip (remote or distant) due to an instruction
fetch (not prefetch)

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 71

Event Description

PM_INST_FROM_RL2L3_SHR The processor's Instruction cache was reloaded with
Shared (S) data from another chip's L2 or L3 on the same
Node or Group (Remote), as this chip due to an
instruction fetch (not prefetch)

Appendix B. Derived metrics, events, and groups supported on POWER8 architecture 221

Event Description

PM_UTHROTTLE Cycles in which instruction issue throttle was active in
ISU

PM_INST_FROM_DL2L3_SHR The processor's Instruction cache was reloaded with
Shared (S) data from another chip's L2 or L3 on a
different Node or Group (Distant), as this chip due to an
instruction fetch (not prefetch)

PM_INST_FROM_DL2L3_MOD The processor's Instruction cache was reloaded with
Modified (M) data from another chip's L2 or L3 on a
different Node or Group (Distant), as this chip due to an
instruction fetch (not prefetch)

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 72

Event Description

PM_INST_FROM_LL4 The processor's Instruction cache was reloaded from the
local chip's L4 cache due to an instruction fetch (not
prefetch)

PM_INST_FROM_RL4 The processor's Instruction cache was reloaded from
another chip's L4 on the same Node or Group (Remote)
due to an instruction fetch (not prefetch)

PM_INST_FROM_DL4 The processor's Instruction cache was reloaded from
another chip's L4 on a different Node or Group (Distant)
due to an instruction fetch (not prefetch)

PM_INST_FROM_DMEM The processor's Instruction cache was reloaded from
another chip's memory on the same Node or Group
(Distant) due to an instruction fetch (not prefetch)

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 73

Event Description

PM_INST_ALL_FROM_L2 The processor's Instruction cache was reloaded from local
core's L2 due to instruction fetches and prefetches

PM_INST_ALL_FROM_L2_MEPF The processor's Instruction cache was reloaded from local
core's L2 hit without dispatch conflicts on Mepf state.
due to instruction fetches and prefetches

PM_INST_ALL_FROM_L2_DISP_CONFLICT_LDHITST The processor's Instruction cache was reloaded from local
core's L2 with load hit store conflict due to instruction
fetches and prefetches

PM_INST_ALL_FROM_L2_DISP_CONFLICT_OTHER The processor's Instruction cache was reloaded from local
core's L2 with dispatch conflict due to instruction fetches
and prefetches

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 74

Event Description

PM_INST_ALL_FROM_L2_NO_CONFLICT The processor's Instruction cache was reloaded from local
core's L2 without conflict due to instruction fetches and
prefetches

PM_INST_ALL_FROM_L31_MOD The processor's Instruction cache was reloaded with
Modified (M) data from another core's L3 on the same
chip due to instruction fetches and prefetches

PM_INST_ALL_FROM_L21_SHR The processor's Instruction cache was reloaded with
Shared (S) data from another core's L2 on the same chip
due to instruction fetches and prefetches

222 High Performance Computing Toolkit: Installation and Usage Guide

Event Description

PM_INST_ALL_FROM_L21_MOD The processor's Instruction cache was reloaded with
Modified (M) data from another core's L2 on the same
chip due to instruction fetches and prefetches

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 75

Event Description

PM_INST_ALL_FROM_L3_NO_CONFLICT The processor's Instruction cache was reloaded from local
core's L3 without conflict due to instruction fetches and
prefetches

PM_INST_ALL_FROM_L3_MEPF The processor's Instruction cache was reloaded from local
core's L3 without dispatch conflicts hit on Mepf state.
due to instruction fetches and prefetches

PM_INST_ALL_FROM_L3_DISP_CONFLICT The processor's Instruction cache was reloaded from local
core's L3 with dispatch conflict due to instruction fetches
and prefetches

PM_INST_ALL_FROM_L3 The processor's Instruction cache was reloaded from local
core's L3 due to instruction fetches and prefetches

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 76

Event Description

PM_INST_ALL_FROM_L2MISS The processor's Instruction cache was reloaded from a
location other than the local core's L2 due to instruction
fetches and prefetches

PM_INST_ALL_FROM_MEMORY The processor's Instruction cache was reloaded from a
memory location including L4 from local remote or
distant due to instruction fetches and prefetches

PM_ISLB_MISS Instruction SLB Miss Total of all segment sizes

PM_INST_ALL_FROM_L3MISS_MOD The processor's Instruction cache was reloaded from a
location other than the local core's L3 due to a instruction
fetch

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 77

Event Description

PM_INST_ALL_FROM_L31_SHR The processor's Instruction cache was reloaded with
Shared (S) data from another core's L3 on the same chip
due to instruction fetches and prefetches

PM_INST_ALL_FROM_RL2L3_MOD The processor's Instruction cache was reloaded with
Modified (M) data from another chip's L2 or L3 on the
same Node or Group (Remote), as this chip due to
instruction fetches and prefetches

PM_INST_ALL_FROM_L31_ECO_SHR The processor's Instruction cache was reloaded with
Shared (S) data from another core's ECO L3 on the same
chip due to instruction fetches and prefetches

PM_INST_ALL_FROM_L31_ECO_MOD The processor's Instruction cache was reloaded with
Modified (M) data from another core's ECO L3 on the
same chip due to instruction fetches and prefetches

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 78

Appendix B. Derived metrics, events, and groups supported on POWER8 architecture 223

Event Description

PM_INST_ALL_FROM_ON_CHIP_CACHE The processor's Instruction cache was reloaded either
shared or modified data from another core's L2/L3 on
the same chip due to instruction fetches and prefetches

PM_INST_ALL_FROM_LMEM The processor's Instruction cache was reloaded from the
local chip's Memory due to instruction fetches and
prefetches

PM_INST_ALL_FROM_RMEM The processor's Instruction cache was reloaded from
another chip's memory on the same Node or Group (
Remote) due to instruction fetches and prefetches

PM_INST_ALL_FROM_OFF_CHIP_CACHE The processor's Instruction cache was reloaded either
shared or modified data from another core's L2/L3 on a
different chip (remote or distant) due to instruction
fetches and prefetches

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 79

Event Description

PM_INST_ALL_FROM_RL2L3_SHR The processor's Instruction cache was reloaded with
Shared (S) data from another chip's L2 or L3 on the same
Node or Group (Remote), as this chip due to instruction
fetches and prefetches

PM_HV_CYC Cycles in which msr_hv is high. Note that this event does
not take msr_pr into consideration

PM_INST_ALL_FROM_DL2L3_SHR The processor's Instruction cache was reloaded with
Shared (S) data from another chip's L2 or L3 on a
different Node or Group (Distant), as this chip due to
instruction fetches and prefetches

PM_INST_ALL_FROM_DL2L3_MOD The processor's Instruction cache was reloaded with
Modified (M) data from another chip's L2 or L3 on a
different Node or Group (Distant), as this chip due to
instruction fetches and prefetches

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 80

Event Description

PM_INST_ALL_FROM_LL4 The processor's Instruction cache was reloaded from the
local chip's L4 cache due to instruction fetches and
prefetches

PM_INST_ALL_FROM_RL4 The processor's Instruction cache was reloaded from
another chip's L4 on the same Node or Group (Remote)
due to instruction fetches and prefetches

PM_INST_ALL_FROM_DL4 The processor's Instruction cache was reloaded from
another chip's L4 on a different Node or Group (Distant)
due to instruction fetches and prefetches

PM_INST_ALL_FROM_DMEM The processor's Instruction cache was reloaded from
another chip's memory on the same Node or Group
(Distant) due to instruction fetches and prefetches

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 81

Event Description

PM_MRK_LD_MISS_EXPOSED_CYC Marked Load exposed Miss cycles

PM_MRK_LD_MISS_L1 Marked DL1 Demand Miss counted at exec time

224 High Performance Computing Toolkit: Installation and Usage Guide

Event Description

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_MRK_LD_MISS_L1_CYC Marked ld latency

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 82

Event Description

PM_MRK_DATA_FROM_L2 The processor's data cache was reloaded from local core's
L2 due to a marked load

PM_BR_UNCOND_CMPL Completion Time Event. This event can also be calculated
from the direct bus as follows: if_pc_br0_br_pred=00
AND if_pc_br0_completed.

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_MRK_DATA_FROM_L2_CYC Duration in cycles to reload from local core's L2 due to a
marked load

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 83

Event Description

PM_BR_PRED_TA_CMPL Completion Time Event. This event can also be
calculated from the direct bus as follows:
if_pc_br0_br_pred(0)='1'.

PM_MRK_DATA_FROM_L2_DISP_CONFLICT_LDHITST_CYC Duration in cycles to reload from local core's L2
with load hit store conflict due to a marked load

PM_MRK_DATA_FROM_L2_DISP_CONFLICT_LDHITST The processor's data cache was reloaded from local
core's L2 with load hit store conflict due to a
marked load

PM_INST_CMPL Number of PowerPC Instructions that completed.
PPC Instructions Finished (completed).

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 84

Event Description

PM_INST_CMPL Number of PowerPC Instructions that completed.
PPC Instructions Finished (completed).

PM_MRK_DATA_FROM_L2_DISP_CONFLICT_OTHER_CYC Duration in cycles to reload from local core's L2
with dispatch conflict due to a marked load

PM_MRK_ST_CMPL_INT Marked store finished with intervention

PM_MRK_DATA_FROM_L2_DISP_CONFLICT_OTHER The processor's data cache was reloaded from local
core's L2 with dispatch conflict due to a marked
load

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 85

Event Description

PM_MRK_DPTEG_FROM_L2_NO_CONFLICT A Page Table Entry was loaded into the TLB from local
core's L2 without conflict due to a marked data side
request

Appendix B. Derived metrics, events, and groups supported on POWER8 architecture 225

Event Description

PM_MRK_DATA_FROM_L2_MEPF The processor's data cache was reloaded from local core's
L2 hit without dispatch conflicts on Mepf state. due to a
marked load

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_MRK_DATA_FROM_L2_MEPF_CYC Duration in cycles to reload from local core's L2 hit
without dispatch conflicts on Mepf state. due to a
marked load

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 86

Event Description

PM_MRK_DATA_FROM_L2_NO_CONFLICT The processor's data cache was reloaded from local core's
L2 without conflict due to a marked load

PM_MRK_DATA_FROM_L21_SHR_CYC Duration in cycles to reload with Shared (S) data from
another core's L2 on the same chip due to a marked load

PM_MRK_DATA_FROM_L21_SHR The processor's data cache was reloaded with Shared (S)
data from another core's L2 on the same chip due to a
marked load

PM_MRK_DATA_FROM_L2_NO_CONFLICT_CYC Duration in cycles to reload from local core's L2 without
conflict due to a marked load

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 87

Event Description

PM_DATA_ALL_FROM_L3_NO_CONFLICT The processor's data cache was reloaded from local core's
L3 without conflict due to either demand loads or data
prefetch

PM_MRK_DATA_FROM_L3_DISP_CONFLICT_CYC Duration in cycles to reload from local core's L3 with
dispatch conflict due to a marked load

PM_MRK_DATA_FROM_L3_DISP_CONFLICT The processor's data cache was reloaded from local core's
L3 with dispatch conflict due to a marked load

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 88

Event Description

PM_MRK_DATA_FROM_L2MISS Data cache reload L2 miss

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_MRK_BR_MPRED_CMPL Marked Branch Mispredicted

PM_MRK_DATA_FROM_L2MISS_CYC Duration in cycles to reload from a location other than
the local core's L2 due to a marked load

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 89

226 High Performance Computing Toolkit: Installation and Usage Guide

Event Description

PM_SYNC_MRK_L2MISS Marked L2 Miss that can throw a synchronous interrupt

PM_MRK_DATA_FROM_L3_CYC Duration in cycles to reload from local core's L3 due to a
marked load

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_MRK_DATA_FROM_L3 The processor's data cache was reloaded from local core's
L3 due to a marked load

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 90

Event Description

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_MRK_DATA_FROM_L3_MEPF The processor's data cache was reloaded from local core's
L3 without dispatch conflicts hit on Mepf state. due to a
marked load

PM_ST_MISS_L1 Store Missed L1

PM_MRK_DATA_FROM_L3_MEPF_CYC Duration in cycles to reload from local core's L3 without
dispatch conflicts hit on Mepf state. due to a marked load

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 91

Event Description

PM_MRK_DATA_FROM_L3_NO_CONFLICT The processor's data cache was reloaded from local core's
L3 without conflict due to a marked load

PM_MRK_DATA_FROM_L31_ECO_SHR_CYC Duration in cycles to reload with Shared (S) data from
another core's ECO L3 on the same chip due to a marked
load

PM_MRK_DATA_FROM_L31_ECO_SHR The processor's data cache was reloaded with Shared (S)
data from another core's ECO L3 on the same chip due to
a marked load

PM_MRK_DATA_FROM_L3_NO_CONFLICT_CYC Duration in cycles to reload from local core's L3 without
conflict due to a marked load

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 92

Event Description

PM_SYNC_MRK_L3MISS Marked L3 misses that can throw a synchronous
interrupt

PM_MRK_DATA_FROM_L3MISS_CYC Duration in cycles to reload from a location other than
the local core's L3 due to a marked load

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_MRK_DATA_FROM_L3MISS The processor's data cache was reloaded from a location
other than the local core's L3 due to a marked load

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 93

Appendix B. Derived metrics, events, and groups supported on POWER8 architecture 227

Event Description

PM_MRK_DATA_FROM_ON_CHIP_CACHE The processor's data cache was reloaded either shared or
modified data from another core's L2/L3 on the same
chip due to a marked load

PM_BACK_BR_CMPL Branch instruction completed with a target address less
than current instruction address

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_MRK_DATA_FROM_ON_CHIP_CACHE_CYC Duration in cycles to reload either shared or modified
data from another core's L2/L3 on the same chip due to
a marked load

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 94

Event Description

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_MRK_DATA_FROM_L21_MOD_CYC Duration in cycles to reload with Modified (M) data from
another core's L2 on the same chip due to a marked load

PM_L1_DCACHE_RELOAD_VALID DL1 reloaded due to Demand Load

PM_MRK_DATA_FROM_L21_MOD The processor's data cache was reloaded with Modified
(M) data from another core's L2 on the same chip due to
a marked load

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 95

Event Description

PM_IPTEG_FROM_L2_NO_CONFLICT A Page Table Entry was loaded into the TLB from local
core's L2 without conflict due to a instruction side
request

PM_MRK_DATA_FROM_L31_ECO_MOD_CYC Duration in cycles to reload with Modified (M) data from
another core's ECO L3 on the same chip due to a marked
load

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_MRK_DATA_FROM_L31_ECO_MOD The processor's data cache was reloaded with Modified
(M) data from another core's ECO L3 on the same chip
due to a marked load

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 96

Event Description

PM_INST_ALL_PUMP_CPRED Pump prediction correct. Counts across all types of
pumps for instruction fetches and prefetches

PM_MRK_DATA_FROM_L31_MOD The processor's data cache was reloaded with Modified
(M) data from another core's L3 on the same chip due to
a marked load

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_MRK_DATA_FROM_L31_MOD_CYC Duration in cycles to reload with Modified (M) data from
another core's L3 on the same chip due to a marked load

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

228 High Performance Computing Toolkit: Installation and Usage Guide

Group 97

Event Description

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_MRK_DATA_FROM_RMEM_CYC Duration in cycles to reload from another chip's memory
on the same Node or Group (Remote) due to a marked
load

PM_MRK_DATA_FROM_RMEM The processor's data cache was reloaded from another
chip's memory on the same Node or Group (Remote)
due to a marked load

PM_SYS_PUMP_MPRED_RTY Final Pump Scope (system) ended up larger than Initial
Pump Scope (Chip/Group) for all data types excluding
data prefetch (demand load, instruction prefetch,
instruction fetch, xlate)

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 98

Event Description

PM_MRK_DATA_FROM_L31_SHR The processor's data cache was reloaded with Shared (S)
data from another core's L3 on the same chip due to a
marked load

PM_DATA_ALL_FROM_L31_MOD The processor's data cache was reloaded with Modified
(M) data from another core's L3 on the same chip due to
either demand loads or data prefetch

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_MRK_DATA_FROM_L31_SHR_CYC Duration in cycles to reload with Shared (S) data from
another core's L3 on the same chip due to a marked load

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 99

Event Description

PM_MRK_DATA_FROM_LL4 The processor's data cache was reloaded from the local
chip's L4 cache due to a marked load

PM_MRK_DATA_FROM_DL4_CYC Duration in cycles to reload from another chip's L4 on a
different Node or Group (Distant) due to a marked load

PM_MRK_DATA_FROM_DL4 The processor's data cache was reloaded from another
chip's L4 on a different Node or Group (Distant) due to a
marked load

PM_MRK_DATA_FROM_LL4_CYC Duration in cycles to reload from the local chip's L4
cache due to a marked load

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 100

Event Description

PM_LD_L3MISS_PEND_CYC Cycles L3 miss was pending for this thread

PM_MRK_DATA_FROM_LMEM The processor's data cache was reloaded from the local
chip's Memory due to a marked load

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_MRK_DATA_FROM_LMEM_CYC Duration in cycles to reload from the local chip's Memory
due to a marked load

PM_RUN_INST_CMPL Run instructions

Appendix B. Derived metrics, events, and groups supported on POWER8 architecture 229

Event Description

PM_RUN_CYC Run cycles

Group 101

Event Description

PM_LD_REF_L1 All L1 D cache load references counted at finish, gated by
reject

PM_MRK_DATA_FROM_MEMORY The processor's data cache was reloaded from a memory
location including L4 from local remote or distant due to
a marked load

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_MRK_DATA_FROM_MEMORY_CYC Duration in cycles to reload from a memory location
including L4 from local remote or distant due to a
marked load

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 102

Event Description

PM_INST_PUMP_CPRED Pump prediction correct. Counts across all types of
pumps for an instruction fetch

PM_MRK_DATA_FROM_OFF_CHIP_CACHE_CYC Duration in cycles to reload either shared or modified
data from another core's L2/L3 on a different chip
(remote or distant) due to a marked load

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_MRK_DATA_FROM_OFF_CHIP_CACHE The processor's data cache was reloaded either shared or
modified data from another core's L2/L3 on a different
chip (remote or distant) due to a marked load

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 103

Event Description

PM_INST_ALL_PUMP_CPRED Pump prediction correct. Counts across all types of
pumps for instruction fetches and prefetches

PM_MRK_DATA_FROM_RL2L3_MOD The processor's data cache was reloaded with Modified
(M) data from another chip's L2 or L3 on the same Node
or Group (Remote), as this chip due to a marked load

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_MRK_DATA_FROM_RL2L3_MOD_CYC Duration in cycles to reload with Modified (M) data from
another chip's L2 or L3 on the same Node or Group
(Remote), as this chip due to a marked load

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 104

Event Description

PM_MRK_DATA_FROM_RL2L3_SHR The processor's data cache was reloaded with Shared (S)
data from another chip's L2 or L3 on the same Node or
Group (Remote), as this chip due to a marked load

230 High Performance Computing Toolkit: Installation and Usage Guide

Event Description

PM_MRK_DATA_FROM_DL2L3_SHR_CYC Duration in cycles to reload with Shared (S) data from
another chip's L2 or L3 on a different Node or Group
(Distant), as this chip due to a marked load

PM_MRK_DATA_FROM_DL2L3_SHR The processor's data cache was reloaded with Shared (S)
data from another chip's L2 or L3 on a different Node or
Group (Distant), as this chip due to a marked load

PM_MRK_DATA_FROM_RL2L3_SHR_CYC Duration in cycles to reload with Shared (S) data from
another chip's L2 or L3 on the same Node or Group
(Remote), as this chip due to a marked load

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 105

Event Description

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_MRK_DATA_FROM_RL4 The processor's data cache was reloaded from another
chip's L4 on the same Node or Group (Remote) due to a
marked load

PM_ALL_SYS_PUMP_CPRED Initial and Final Pump Scope was system pump for all
data types (demand load, data prefetch, instruction
prefetch, instruction fetch, translate)

PM_MRK_DATA_FROM_RL4_CYC Duration in cycles to reload from another chip's L4 on
the same Node or Group (Remote) due to a marked load

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 106

Event Description

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_MRK_DATA_FROM_DL2L3_MOD_CYC Duration in cycles to reload with Modified (M) data from
another chip's L2 or L3 on a different Node or Group
(Distant), as this chip due to a marked load

PM_L2_SYS_PUMP RC requests that were system pump attempts

PM_MRK_DATA_FROM_DL2L3_MOD The processor's data cache was reloaded with Modified
(M) data from another chip's L2 or L3 on a different
Node or Group (Distant), as this chip due to a marked
load

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 107

Event Description

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_MRK_DATA_FROM_DMEM_CYC Duration in cycles to reload from another chip's memory
on the same Node or Group (Distant) due to a marked
load

PM_IPTEG_FROM_L2_DISP_CONFLICT_LDHITST A Page Table Entry was loaded into the TLB from local
core's L2 with load hit store conflict due to a instruction
side request

PM_MRK_DATA_FROM_DMEM The processor's data cache was reloaded from another
chip's memory on the same Node or Group (Distant) due
to a marked load

PM_RUN_INST_CMPL Run instructions

Appendix B. Derived metrics, events, and groups supported on POWER8 architecture 231

Event Description

PM_RUN_CYC Run cycles

Group 108

Event Description

PM_L1MISS_LAT_EXC_256 L1 misses that took longer than 256 cycles to resolve
(miss to reload)

PM_L1MISS_LAT_EXC_32 L1 misses that took longer than 32 cycles to resolve (miss
to reload)

PM_L1MISS_LAT_EXC_1024 L1 misses that took longer than 1024 cycles to resolve
(miss to reload)

PM_L1MISS_LAT_EXC_2048 L1 misses that took longer than 2048 cycles to resolve
(miss to reload)

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 109

Event Description

PM_MRK_ST_L2DISP_TO_CMPL_CYC Cycles from L2 RC dispatch to L2 RC completion

PM_MRK_ST_NEST Marked store sent to nest

PM_MRK_ST_DRAIN_TO_L2DISP_CYC Cycles to drain st from core to L2

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 110

Event Description

PM_L2_ST All successful D side store dispatches for this thread

PM_L2_CHIP_PUMP RC requests that were local on chip pump attempts

PM_L2_SYS_PUMP RC requests that were system pump attempts

PM_L2_RTY_LD RC retries on PB for any load from core

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 111

Event Description

PM_L2_ST_MISS All successful D side store dispatches for this thread that
were L2 Miss

PM_L2_GROUP_PUMP RC requests that were on Node Pump attempts

PM_L2_RTY_ST RC retries on PB for any store from core

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 112

232 High Performance Computing Toolkit: Installation and Usage Guide

Event Description

PM_RC_LIFETIME_EXC_256 Number of times the RC machine for a sampled
instruction was active for more than 256 cycles

PM_RC_LIFETIME_EXC_32 Number of times the RC machine for a sampled
instruction was active for more than 32 cycles

PM_RC_LIFETIME_EXC_1024 Number of times the RC machine for a sampled
instruction was active for more than 1024 cycles

PM_RC_LIFETIME_EXC_2048 Number of times the RC machine for a sampled
instruction was active for more than 2048 cycles

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 113

Event Description

PM_RC0_BUSY RC mach 0 Busy. Used by PMU to sample average RC
lifetime (mach0 used as sample point)

PM_SN0_BUSY SN mach 0 Busy. Used by PMU to sample average RC
lifetime (mach0 used as sample point)

PM_RC_USAGE Continuous 16 cycle(2to1) window where this signals
rotates thru sampling each L2 RC machine busy. PMU
uses this wave to then do 16 cyc count to sample total
number of machs running

PM_SN_USAGE Continuous 16 cycle(2to1) window where this signals
rotates thru sampling each L2 SN machine busy. PMU
uses this wave to then do 16 cyc count to sample total
number of machs running

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 114

Event Description

PM_CO0_BUSY CO mach 0 Busy. Used by PMU to sample average RC
lifetime (mach0 used as sample point)

PM_L1PF_L2MEMACC Valid when first beat of data comes in for an L1pref
where data came from mem(or L4)

PM_CO_USAGE Continuous 16 cycle(2to1) window where this signals
rotates thru sampling each L2 CO machine busy. PMU
uses this wave to then do 16 cyc count to sample total
number of machs running

PM_ISIDE_L2MEMACC Valid when first beat of data comes in for an i side fetch
where data came from mem(or L4)

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 115

Event Description

PM_RC0_ALLOC RC mach 0 Busy. Used by PMU to sample average RC
lifetime (mach0 used as sample point)

PM_SN0_ALLOC SN mach 0 Busy. Used by PMU to sample average RC
lifetime (mach0 used as sample point)

PM_L3_SN0_ALLOC Lifetime, sample of snooper machine 0 valid

PM_L3_RD0_ALLOC Lifetime, sample of RD machine 0 valid

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Appendix B. Derived metrics, events, and groups supported on POWER8 architecture 233

Group 116

Event Description

PM_CO0_ALLOC CO mach 0 Busy. Used by PMU to sample average RC
lifetime (mach0 used as sample point)

PM_ST_CMPL Store completion count

PM_L3_CO0_ALLOC Lifetime, sample of CO machine 0 valid

PM_L3_PF0_ALLOC Lifetime, sample of PF machine 0 valid

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 117

Event Description

PM_L3_PF_MISS_L3 L3 Prefetch missed in L3

PM_L3_CO_L31 L3 CO to L3.1 OR of port 0 and 1 (lossy)

PM_L3_PF_ON_CHIP_CACHE L3 Prefetch from On chip cache

PM_L3_PF_ON_CHIP_MEM L3 Prefetch from On chip memory

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 118

Event Description

PM_L3_LD_PREF L3 Load Prefetches

PM_L3_CO_MEM L3 CO to memory OR of port 0 and 1 (lossy)

PM_L3_PF_OFF_CHIP_CACHE L3 Prefetch from Off chip cache

PM_L3_PF_OFF_CHIP_MEM L3 Prefetch from Off chip memory

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 119

Event Description

PM_L3_SN_USAGE Rotating sample of 8 snoop valids

PM_L3_RD_USAGE Rotating sample of 16 RD actives

PM_L3_SN0_BUSY Lifetime, sample of snooper machine 0 valid

PM_L3_RD0_BUSY Lifetime, sample of RD machine 0 valid

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 120

Event Description

PM_L3_CI_USAGE Rotating sample of 16 CI or CO actives

PM_L3_PF_USAGE Rotating sample of 32 PF actives

PM_L3_CO0_BUSY Lifetime, sample of CO machine 0 valid

PM_L3_PF0_BUSY Lifetime, sample of PF machine 0 valid

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 121

234 High Performance Computing Toolkit: Installation and Usage Guide

Event Description

PM_VSU0_1FLOP One flop (fadd, fmul, fsub, fcmp, fsel, fabs, fnabs, fres,
fsqrte, fneg) operation finished

PM_VSU1_1FLOP One flop (fadd, fmul, fsub, fcmp, fsel, fabs, fnabs, fres,
fsqrte, fneg) operation finished

PM_VSU0_2FLOP Two flops operation (scalar fmadd, fnmadd, fmsub,
fnmsub and DP vector versions of single flop
instructions)

PM_VSU1_2FLOP Two flops operation (scalar fmadd, fnmadd, fmsub,
fnmsub and DP vector versions of single flop
instructions)

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 122

Event Description

PM_VSU0_4FLOP Four flops operation (scalar fdiv, fsqrt, DP vector version
of fmadd, fnmadd, fmsub, fnmsub, SP vector versions of
single flop instructions)

PM_VSU1_4FLOP Four flops operation (scalar fdiv, fsqrt, DP vector version
of fmadd, fnmadd, fmsub, fnmsub, SP vector versions of
single flop instructions)

PM_VSU0_8FLOP Eight flops operation (DP vector versions of fdiv,fsqrt and
SP vector versions of fmadd,fnmadd,fmsub,fnmsub)

PM_VSU1_8FLOP Eight flops operation (DP vector versions of fdiv,fsqrt and
SP vector versions of fmadd,fnmadd,fmsub,fnmsub)

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 123

Event Description

PM_VSU0_COMPLEX_ISSUED Complex VMX instruction issued

PM_VSU1_COMPLEX_ISSUED Complex VMX instruction issued

PM_VSU0_SIMPLE_ISSUED Simple VMX instruction issued

PM_VSU1_SIMPLE_ISSUED Simple VMX instruction issued

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 124

Event Description

PM_VSU0_DP_FMA DP vector version of fmadd,fnmadd,fmsub,fnmsub

PM_VSU1_DP_FMA DP vector version of fmadd,fnmadd,fmsub,fnmsub

PM_VSU0_FMA Two flops operation (fmadd, fnmadd, fmsub, fnmsub)
Scalar instructions only!

PM_VSU1_FMA Two flops operation (fmadd, fnmadd, fmsub, fnmsub)
Scalar instructions only!

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 125

Event Description

PM_VSU1_DD_ISSUED 64BIT Decimal Issued

Appendix B. Derived metrics, events, and groups supported on POWER8 architecture 235

Event Description

PM_VSU0_DD_ISSUED 64BIT Decimal Issued

PM_VSU0_CY_ISSUED Cryptographic instruction RFC02196 Issued

PM_VSU1_CY_ISSUED Cryptographic instruction RFC02196 Issued

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 126

Event Description

PM_VSU1_FSQRT_FDIV Four flops operation (fdiv,fsqrt) Scalar Instructions only!

PM_VSU0_SQ Store Vector Issued

PM_VSU1_SQ Store Vector Issued

PM_VSU0_16FLOP Sixteen flops operation (SP vector versions of fdiv,fsqrt)

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 127

Event Description

PM_VSU0_SINGLE FPU single precision

PM_VSU1_SINGLE FPU single precision

PM_VSU0_FIN VSU0 Finished an instruction

PM_VSU1_FIN VSU1 Finished an instruction

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 128

Event Description

PM_VSU0_EX_ISSUED Direct move 32/64b VRFtoGPR RFC02206 Issued

PM_VSU1_EX_ISSUED Direct move 32/64b VRFtoGPR RFC02206 Issued

PM_VSU0_DQ_ISSUED 128BIT Decimal Issued

PM_VSU1_DQ_ISSUED 128BIT Decimal Issued

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 129

Event Description

PM_VSU0_VECTOR_DP_ISSUED Double Precision vector instruction issued on Pipe0

PM_VSU1_VECTOR_DP_ISSUED Double Precision vector instruction issued on Pipe1

PM_VSU0_VECTOR_SP_ISSUED Single Precision vector instruction issued (executed)

PM_VSU1_VECTOR_SP_ISSUED Single Precision vector instruction issued (executed)

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 130

Event Description

PM_VSU0_SCALAR_DP_ISSUED Double Precision scalar instruction issued on Pipe0

PM_VSU1_SCALAR_DP_ISSUED Double Precision scalar instruction issued on Pipe1

236 High Performance Computing Toolkit: Installation and Usage Guide

Event Description

PM_VSU0_DP_FSQRT_FDIV DP vector versions of fdiv,fsqrt

PM_VSU1_DP_FSQRT_FDIV DP vector versions of fdiv,fsqrt

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 131

Event Description

PM_VSU0_FPSCR Move to/from FPSCR type instruction issued on Pipe 0

PM_VSU1_FPSCR Move to/from FPSCR type instruction issued on Pipe 0

PM_VSU0_DP_2FLOP DP vector version of fmul, fsub, fcmp, fsel, fabs, fnabs,
fres ,fsqrte, fneg

PM_VSU1_DP_2FLOP DP vector version of fmul, fsub, fcmp, fsel, fabs, fnabs,
fres ,fsqrte, fneg

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 132

Event Description

PM_VSU0_STF FPU store (SP or DP) issued on Pipe0

PM_VSU1_STF FPU store (SP or DP) issued on Pipe1

PM_VSU0_PERMUTE_ISSUED Permute VMX Instruction Issued

PM_VSU1_PERMUTE_ISSUED Permute VMX Instruction Issued

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 133

Event Description

PM_VSU0_FSQRT_FDIV Four flops operation (fdiv,fsqrt) Scalar Instructions only!

PM_VSU1_FSQRT_FDIV Four flops operation (fdiv,fsqrt) Scalar Instructions only!

PM_VSU1_16FLOP Sixteen flops operation (SP vector versions of fdiv,fsqrt)

PM_IPTEG_FROM_L3 A Page Table Entry was loaded into the TLB from local
core's L3 due to a instruction side request

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 134

Event Description

PM_DFU Finish DFU (all finish)

PM_DFU_DCFFIX Convert from fixed opcode finish (dcffix,dcffixq)

PM_DFU_DENBCD BCD >DPD opcode finish (denbcd, denbcdq)

PM_DFU_MC Finish DFU multicycle

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 135

Appendix B. Derived metrics, events, and groups supported on POWER8 architecture 237

Event Description

PM_DPTEG_FROM_L2_NO_CONFLICT A Page Table Entry was loaded into the TLB from local
core's L2 without conflict due to a data side request

PM_DPTEG_FROM_L2_MEPF A Page Table Entry was loaded into the TLB from local
core's L2 hit without dispatch conflicts on Mepf state,
due to a data side request

PM_DPTEG_FROM_L2_DISP_CONFLICT_LDHITST A Page Table Entry was loaded into the TLB from local
core's L2 with load hit store conflict due to a data side
request

PM_DPTEG_FROM_L2_DISP_CONFLICT_OTHER A Page Table Entry was loaded into the TLB from local
core's L2 with dispatch conflict due to a data side request

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 136

Event Description

PM_DPTEG_FROM_L3_NO_CONFLICT A Page Table Entry was loaded into the TLB from local
core's L3 without conflict due to a data side request

PM_DPTEG_FROM_L3_MEPF A Page Table Entry was loaded into the TLB from local
core's L3 without dispatch conflicts hit on Mepf state,
due to a data side request

PM_DPTEG_FROM_L3_DISP_CONFLICT A Page Table Entry was loaded into the TLB from local
core's L3 with dispatch conflict due to a data side request

PM_DPTEG_FROM_L3 A Page Table Entry was loaded into the TLB from local
core's L3 due to a data side request

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 137

Event Description

PM_DPTEG_FROM_L31_SHR A Page Table Entry was loaded into the TLB with Shared
(S) data from another core's L3 on the same chip due to a
data side request

PM_DPTEG_FROM_L31_MOD A Page Table Entry was loaded into the TLB with
Modified (M) data from another core's L3 on the same
chip due to a data side request

PM_DPTEG_FROM_L31_ECO_SHR A Page Table Entry was loaded into the TLB with Shared
(S) data from another core's ECO L3 on the same chip
due to a data side request

PM_DPTEG_FROM_L31_ECO_MOD A Page Table Entry was loaded into the TLB with
Modified (M) data from another core's ECO L3 on the
same chip due to a data side request

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 138

Event Description

PM_DPTEG_FROM_RL2L3_SHR A Page Table Entry was loaded into the TLB with Shared
(S) data from another chip's L2 or L3 on the same Node
or Group (Remote), as this chip due to a data side
request

PM_DPTEG_FROM_RL2L3_MOD A Page Table Entry was loaded into the TLB with
Modified (M) data from another chip's L2 or L3 on the
same Node or Group (Remote), as this chip due to a data
side request

PM_DPTEG_FROM_DL2L3_SHR A Page Table Entry was loaded into the TLB with Shared
(S) data from another chip's L2 or L3 on a different Node
or Group (Distant), as this chip due to a data side request

238 High Performance Computing Toolkit: Installation and Usage Guide

Event Description

PM_DPTEG_FROM_DL2L3_MOD A Page Table Entry was loaded into the TLB with
Modified (M) data from another chip's L2 or L3 on a
different Node or Group (Distant), as this chip due to a
data side request

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 139

Event Description

PM_DPTEG_FROM_ON_CHIP_CACHE A Page Table Entry was loaded into the TLB either
shared or modified data from another core's L2/L3 on
the same chip due to a data side request

PM_DPTEG_FROM_MEMORY A Page Table Entry was loaded into the TLB from a
memory location including L4 from local remote or
distant due to a data side request

PM_DPTEG_FROM_RMEM A Page Table Entry was loaded into the TLB from
another chip's memory on the same Node or Group (
Remote) due to a data side request

PM_DPTEG_FROM_OFF_CHIP_CACHE A Page Table Entry was loaded into the TLB either
shared or modified data from another core's L2/L3 on a
different chip (remote or distant) due to a data side
request

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 140

Event Description

PM_DPTEG_FROM_LL4 A Page Table Entry was loaded into the TLB from the
local chip's L4 cache due to a data side request

PM_DPTEG_FROM_RL4 A Page Table Entry was loaded into the TLB from
another chip's L4 on the same Node or Group (Remote)
due to a data side request

PM_DPTEG_FROM_DL4 A Page Table Entry was loaded into the TLB from
another chip's L4 on a different Node or Group (Distant)
due to a data side request

PM_DPTEG_FROM_DMEM A Page Table Entry was loaded into the TLB from
another chip's memory on the same Node or Group
(Distant) due to a data side request

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 141

Event Description

PM_DPTEG_FROM_L2MISS A Page Table Entry was loaded into the TLB from a
location other than the local core's L2 due to a data side
request

PM_DPTEG_FROM_LMEM A Page Table Entry was loaded into the TLB from the
local chip's Memory due to a data side request

PM_DPTEG_FROM_RMEM A Page Table Entry was loaded into the TLB from
another chip's memory on the same Node or Group (
Remote) due to a data side request

PM_DPTEG_FROM_L3MISS A Page Table Entry was loaded into the TLB from a
location other than the local core's L3 due to a data side
request

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Appendix B. Derived metrics, events, and groups supported on POWER8 architecture 239

Group 142

Event Description

PM_DPTEG_FROM_L2 A Page Table Entry was loaded into the TLB from local
core's L2 due to a data side request

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_DPTEG_FROM_L21_SHR A Page Table Entry was loaded into the TLB with Shared
(S) data from another core's L2 on the same chip due to a
data side request

PM_DPTEG_FROM_L21_MOD A Page Table Entry was loaded into the TLB with
Modified (M) data from another core's L2 on the same
chip due to a data side request

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 143

Event Description

PM_IPTEG_FROM_L3_NO_CONFLICT A Page Table Entry was loaded into the TLB from local
core's L3 without conflict due to a instruction side
request

PM_IPTEG_FROM_L3_MEPF A Page Table Entry was loaded into the TLB from local
core's L3 without dispatch conflicts hit on Mepf state.
due to a instruction side request

PM_IPTEG_FROM_L3_DISP_CONFLICT A Page Table Entry was loaded into the TLB from local
core's L3 with dispatch conflict due to a instruction side
request

PM_IPTEG_FROM_L2_DISP_CONFLICT_OTHER A Page Table Entry was loaded into the TLB from local
core's L2 with dispatch conflict due to a instruction side
request

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 144

Event Description

PM_IPTEG_FROM_L31_SHR A Page Table Entry was loaded into the TLB with Shared
(S) data from another core's L3 on the same chip due to a
instruction side request

PM_IPTEG_FROM_L31_MOD A Page Table Entry was loaded into the TLB with
Modified (M) data from another core's L3 on the same
chip due to a instruction side request

PM_IPTEG_FROM_L31_ECO_SHR A Page Table Entry was loaded into the TLB with Shared
(S) data from another core's ECO L3 on the same chip
due to a instruction side request

PM_IPTEG_FROM_L31_ECO_MOD A Page Table Entry was loaded into the TLB with
Modified (M) data from another core's ECO L3 on the
same chip due to a instruction side request

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 145

Event Description

PM_IPTEG_FROM_RL2L3_SHR A Page Table Entry was loaded into the TLB with Shared
(S) data from another chip's L2 or L3 on the same Node
or Group (Remote), as this chip due to a instruction side
request

240 High Performance Computing Toolkit: Installation and Usage Guide

Event Description

PM_IPTEG_FROM_RL2L3_MOD A Page Table Entry was loaded into the TLB with
Modified (M) data from another chip's L2 or L3 on the
same Node or Group (Remote), as this chip due to a
instruction side request

PM_IPTEG_FROM_DL2L3_SHR A Page Table Entry was loaded into the TLB with Shared
(S) data from another chip's L2 or L3 on a different Node
or Group (Distant), as this chip due to a instruction side
request

PM_IPTEG_FROM_DL2L3_MOD A Page Table Entry was loaded into the TLB with
Modified (M) data from another chip's L2 or L3 on a
different Node or Group (Distant), as this chip due to a
instruction side request

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 146

Event Description

PM_IPTEG_FROM_ON_CHIP_CACHE A Page Table Entry was loaded into the TLB either
shared or modified data from another core's L2/L3 on
the same chip due to a instruction side request

PM_IPTEG_FROM_MEMORY A Page Table Entry was loaded into the TLB from a
memory location including L4 from local remote or
distant due to a instruction side request

PM_IPTEG_FROM_RMEM A Page Table Entry was loaded into the TLB from
another chip's memory on the same Node or Group (
Remote) due to a instruction side request

PM_IPTEG_FROM_OFF_CHIP_CACHE A Page Table Entry was loaded into the TLB either
shared or modified data from another core's L2/L3 on a
different chip (remote or distant) due to a instruction side
request

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 147

Event Description

PM_IPTEG_FROM_LL4 A Page Table Entry was loaded into the TLB from the
local chip's L4 cache due to a instruction side request

PM_IPTEG_FROM_RL4 A Page Table Entry was loaded into the TLB from
another chip's L4 on the same Node or Group (Remote)
due to a instruction side request

PM_IPTEG_FROM_DL4 A Page Table Entry was loaded into the TLB from
another chip's L4 on a different Node or Group (Distant)
due to a instruction side request

PM_IPTEG_FROM_L3MISS A Page Table Entry was loaded into the TLB from a
location other than the local core's L3 due to a instruction
side request

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 148

Event Description

PM_IPTEG_FROM_L2MISS A Page Table Entry was loaded into the TLB from a
location other than the local core's L2 due to a instruction
side request

PM_IPTEG_FROM_LMEM A Page Table Entry was loaded into the TLB from the
local chip's Memory due to a instruction side request

Appendix B. Derived metrics, events, and groups supported on POWER8 architecture 241

Event Description

PM_IPTEG_FROM_RMEM A Page Table Entry was loaded into the TLB from
another chip's memory on the same Node or Group (
Remote) due to a instruction side request

PM_IPTEG_FROM_DMEM A Page Table Entry was loaded into the TLB from
another chip's memory on the same Node or Group
(Distant) due to a instruction side request

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 149

Event Description

PM_IPTEG_FROM_L2 A Page Table Entry was loaded into the TLB from local
core's L2 due to a instruction side request

PM_IPTEG_FROM_L2_MEPF A Page Table Entry was loaded into the TLB from local
core's L2 hit without dispatch conflicts on Mepf state.
due to a instruction side request

PM_IPTEG_FROM_L21_SHR A Page Table Entry was loaded into the TLB with Shared
(S) data from another core's L2 on the same chip due to a
instruction side request

PM_IPTEG_FROM_L21_MOD A Page Table Entry was loaded into the TLB with
Modified (M) data from another core's L2 on the same
chip due to a instruction side request

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 150

Event Description

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_MRK_DPTEG_FROM_L2_MEPF A Page Table Entry was loaded into the TLB from local
core's L2 hit without dispatch conflicts on Mepf state.
due to a marked data side request

PM_MRK_DPTEG_FROM_L2_DISP_CONFLICT_LDHITST A Page Table Entry was loaded into the TLB from local
core's L2 with load hit store conflict due to a marked
data side request

PM_MRK_DPTEG_FROM_L2_DISP_CONFLICT_OTHER A Page Table Entry was loaded into the TLB from local
core's L2 with dispatch conflict due to a marked data
side request

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 151

Event Description

PM_MRK_DPTEG_FROM_L3_NO_CONFLICT A Page Table Entry was loaded into the TLB from local
core's L3 without conflict due to a marked data side
request

PM_MRK_DPTEG_FROM_L3_MEPF A Page Table Entry was loaded into the TLB from local
core's L3 without dispatch conflicts hit on Mepf state.
due to a marked data side request

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_MRK_DPTEG_FROM_L3 A Page Table Entry was loaded into the TLB from local
core's L3 due to a marked data side request

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

242 High Performance Computing Toolkit: Installation and Usage Guide

Group 152

Event Description

PM_MRK_DPTEG_FROM_L31_SHR A Page Table Entry was loaded into the TLB with Shared
(S) data from another core's L3 on the same chip due to a
marked data side request

PM_MRK_DPTEG_FROM_L31_MOD A Page Table Entry was loaded into the TLB with
Modified (M) data from another core's L3 on the same
chip due to a marked data side request

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_MRK_DPTEG_FROM_L31_ECO_MOD A Page Table Entry was loaded into the TLB with
Modified (M) data from another core's ECO L3 on the
same chip due to a marked data side request

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 153

Event Description

PM_MRK_DPTEG_FROM_L2 A Page Table Entry was loaded into the TLB from local
core's L2 due to a marked data side request

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_MRK_DPTEG_FROM_L21_SHR A Page Table Entry was loaded into the TLB with Shared
(S) data from another core's L2 on the same chip due to a
marked data side request

PM_MRK_DPTEG_FROM_L21_MOD A Page Table Entry was loaded into the TLB with
Modified (M) data from another core's L2 on the same
chip due to a marked data side request

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 154

Event Description

PM_MRK_DPTEG_FROM_RL2L3_SHR A Page Table Entry was loaded into the TLB with Shared
(S) data from another chip's L2 or L3 on the same Node
or Group (Remote), as this chip due to a marked data
side request

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_MRK_DPTEG_FROM_DL2L3_SHR A Page Table Entry was loaded into the TLB with Shared
(S) data from another chip's L2 or L3 on a different Node
or Group (Distant), as this chip due to a marked data
side request

PM_MRK_DPTEG_FROM_DL2L3_MOD A Page Table Entry was loaded into the TLB with
Modified (M) data from another chip's L2 or L3 on a
different Node or Group (Distant), as this chip due to a
marked data side request

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 155

Event Description

PM_MRK_DPTEG_FROM_ON_CHIP_CACHE A Page Table Entry was loaded into the TLB either
shared or modified data from another core's L2/L3 on
the same chip due to a marked data side request

PM_MRK_DPTEG_FROM_LMEM A Page Table Entry was loaded into the TLB from the
local chip's Memory due to a marked data side request

Appendix B. Derived metrics, events, and groups supported on POWER8 architecture 243

Event Description

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_MRK_DPTEG_FROM_OFF_CHIP_CACHE A Page Table Entry was loaded into the TLB either
shared or modified data from another core's L2/L3 on a
different chip (remote or distant) due to a marked data
side request

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 156

Event Description

PM_MRK_DPTEG_FROM_LL4 A Page Table Entry was loaded into the TLB from the
local chip's L4 cache due to a marked data side request

PM_MRK_DPTEG_FROM_RL4 A Page Table Entry was loaded into the TLB from
another chip's L4 on the same Node or Group (Remote)
due to a marked data side request

PM_MRK_DPTEG_FROM_DL4 A Page Table Entry was loaded into the TLB from
another chip's L4 on a different Node or Group (Distant)
due to a marked data side request

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 157

Event Description

PM_MRK_DPTEG_FROM_L2MISS A Page Table Entry was loaded into the TLB from a
location other than the local core's L2 due to a marked
data side request

PM_MRK_DATA_FROM_MEM The processor's data cache was reloaded from a memory
location including L4 from local remote or distant due to
a marked load

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_MRK_DPTEG_FROM_L3MISS A Page Table Entry was loaded into the TLB from a
location other than the local core's L3 due to a marked
data side request

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 158

Event Description

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_MRK_DPTEG_FROM_MEMORY A Page Table Entry was loaded into the TLB from a
memory location including L4 from local remote or
distant due to a marked data side request

PM_MRK_DPTEG_FROM_RMEM A Page Table Entry was loaded into the TLB from
another chip's memory on the same Node or Group (
Remote) due to a marked data side request

PM_MRK_DPTEG_FROM_DMEM A Page Table Entry was loaded into the TLB from
another chip's memory on the same Node or Group
(Distant) due to a marked data side request

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

244 High Performance Computing Toolkit: Installation and Usage Guide

Group 159

Event Description

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_MRK_DPTEG_FROM_RL2L3_MOD A Page Table Entry was loaded into the TLB with
Modified (M) data from another chip's L2 or L3 on the
same Node or Group (Remote), as this chip due to a
marked data side request

PM_MRK_DPTEG_FROM_L3_DISP_CONFLICT A Page Table Entry was loaded into the TLB from local
core's L3 with dispatch conflict due to a marked data side
request

PM_MRK_DPTEG_FROM_L2_DISP_CONFLICT_OTHER A Page Table Entry was loaded into the TLB from local
core's L2 with dispatch conflict due to a marked data side
request

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 160

Event Description

PM_MRK_DPTEG_FROM_L31_SHR A Page Table Entry was loaded into the TLB with Shared
(S) data from another core's L3 on the same chip due to a
marked data side request

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_MRK_DPTEG_FROM_L31_ECO_SHR A Page Table Entry was loaded into the TLB with Shared
(S) data from another core's ECO L3 on the same chip
due to a marked data side request

PM_MRK_DPTEG_FROM_L31_ECO_MOD A Page Table Entry was loaded into the TLB with
Modified (M) data from another core's ECO L3 on the
same chip due to a marked data side request

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 161

Event Description

PM_LSU_FX_FIN LSU Finished a FX operation (up to 2 per cycle)

PM_ST_FIN Store Instructions Finished

PM_LSU_FIN LSU Finished an instruction (up to 2 per cycle)

PM_LD_MISS_L1 Load Missed L1

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 162

Event Description

PM_LSU_LRQ_S0_ALLOC Per thread use edge detect to count allocates On a per
thread basis, level signal indicating Slot 0 is valid. By
instrumenting a single slot we can calculate service time
for that slot. Previous machines required a separate signal
indicating the slot was allocated. Because any signal can
be routed to any counter in P8, we can count level in one
PMC and edge detect in another PMC using the same
signal

PM_LSU_LRQ_S43_VALID LRQ slot 43 was busy

PM_LSU_LRQ_S43_ALLOC LRQ slot 43 was released

PM_LSU_LRQ_S0_VALID Slot 0 of LRQ valid

PM_RUN_INST_CMPL Run instructions

Appendix B. Derived metrics, events, and groups supported on POWER8 architecture 245

Event Description

PM_RUN_CYC Run cycles

Group 163

Event Description

PM_LSU_LMQ_FULL_CYC LMQ full

PM_LSU_LMQ_SRQ_EMPTY_CYC LSU empty (lmq and srq empty)

PM_LSU_LMQ_S0_VALID Per thread use edge detect to count allocates On a per
thread basis, level signal indicating Slot 0 is valid. By
instrumenting a single slot we can calculate service time
for that slot. Previous machines required a separate signal
indicating the slot was allocated. Because any signal can
be routed to any counter in P8, we can count level in one
PMC and edge detect in another PMC using the same
signal.

PM_LSU_LMQ_S0_ALLOC Slot 0 of LMQ valid

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 164

Event Description

PM_LSU_SRQ_S39_ALLOC SRQ slot 39 was released

PM_LSU_SRQ_S0_VALID Slot 0 of SRQ valid

PM_LSU_SRQ_S0_ALLOC Per thread use edge detect to count allocates On a per
thread basis, level signal indicating Slot 0 is valid. By
instrumenting a single slot we can calculate service time
for that slot. Previous machines required a separate signal
indicating the slot was allocated. Because any signal can
be routed to any counter in P8, we can count level in one
PMC and edge detect in another PMC using the same
signal.

PM_LSU_SRQ_S39_VALID SRQ slot 39 was busy

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 165

Event Description

PM_LSU_SRQ_FULL_CYC Storage Queue is full and is blocking dispatch

PM_REAL_SRQ_FULL Out of real srq entries

PM_DISP_HELD_SRQ_FULL Dispatch held due SRQ no room

PM_LSU0_STORE_REJECT LS0 store reject

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 166

Event Description

PM_LSU0_LMQ_LHR_MERGE LS0 Load Merged with another cacheline request

PM_LSU1_LMQ_LHR_MERGE LS1 Load Merge with another cacheline request

PM_LSU2_LMQ_LHR_MERGE LS0 Load Merged with another cacheline request

PM_LSU3_LMQ_LHR_MERGE LS1 Load Merge with another cacheline request

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

246 High Performance Computing Toolkit: Installation and Usage Guide

Group 167

Event Description

PM_LD_REF_L1_LSU0 LS0 L1 D cache load references counted at finish, gated
by reject

PM_LD_REF_L1_LSU1 LS1 L1 D cache load references counted at finish, gated
by reject

PM_LD_REF_L1_LSU2 LS2 L1 D cache load references counted at finish, gated
by reject

PM_LD_REF_L1_LSU3 LS3 L1 D cache load references counted at finish, gated
by reject

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 168

Event Description

PM_LS0_L1_PREF LS0 L1 cache data prefetches

PM_LS1_L1_PREF LS1 L1 cache data prefetches

PM_LS0_L1_SW_PREF Software L1 Prefetches, including SW Transient Prefetches

PM_LS1_L1_SW_PREF Software L1 Prefetches, including SW Transient Prefetches

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 169

Event Description

PM_LSU0_SRQ_STFWD LS0 SRQ forwarded data to a load

PM_LSU1_SRQ_STFWD LS1 SRQ forwarded data to a load

PM_LSU2_SRQ_STFWD LS2 SRQ forwarded data to a load

PM_LSU3_SRQ_STFWD LS3 SRQ forwarded data to a load

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 170

Event Description

PM_LSU0_FLUSH_UST LS0 Flush: Unaligned Store

PM_LSU1_FLUSH_UST LS1 Flush: Unaligned Store

PM_FREQ_DOWN Power Management: Below Threshold B

PM_FREQ_UP Power Management: Above Threshold A

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 171

Event Description

PM_LSU0_FLUSH_LRQ LS0 Flush: LRQ

PM_LSU1_FLUSH_LRQ LS1 Flush: LRQ

PM_LSU2_FLUSH_LRQ LS2 Flush: LRQ

PM_LSU3_FLUSH_LRQ LS3 Flush: LRQ

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Appendix B. Derived metrics, events, and groups supported on POWER8 architecture 247

Group 172

Event Description

PM_LSU0_FLUSH_ULD LS0 Flush: Unaligned Load

PM_LSU1_FLUSH_ULD LS1 Flush: Unaligned Load

PM_LSU2_FLUSH_ULD LS3 Flush: Unaligned Load

PM_LSU3_FLUSH_ULD LS14 Flush: Unaligned Load

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 173

Event Description

PM_LSU0_FLUSH_SRQ LS0 Flush: SRQ

PM_LSU1_FLUSH_SRQ LS1 Flush: SRQ

PM_LSU2_FLUSH_SRQ LS2 Flush: SRQ

PM_LSU3_FLUSH_SRQ LS13 Flush: SRQ

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 174

Event Description

PM_PTE_PREFETCH PTE prefetches

PM_TABLEWALK_CYC_PREF Tablewalk qualified for pte prefetches

PM_LSU_FOUR_TABLEWALK_CYC Cycles when four tablewalks pending on this thread

PM_LSU_TWO_TABLEWALK_CYC Cycles when two tablewalks pending on this thread

RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 175

Event Description

PM_LSU0_PRIMARY_ERAT_HIT Primary ERAT hit

PM_LSU1_PRIMARY_ERAT_HIT Primary ERAT hit

PM_LSU2_PRIMARY_ERAT_HIT Primary ERAT hit

PM_LSU3_PRIMARY_ERAT_HIT Primary ERAT hit

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 176

Event Description

PM_LSU2_LDF LS2 Scalar Loads

PM_LSU3_LDF LS3 Scalar Loads

PM_LSU2_LDX LS0 Vector Loads

PM_LSU3_LDX LS1 Vector Loads

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 177

248 High Performance Computing Toolkit: Installation and Usage Guide

Event Description

PM_LSU0_NCLD LS0 Non cachable Loads counted at finish

PM_LSU1_NCLD LS1 Non cachable Loads counted at finish

PM_LSU_NCST Non cachable Stores sent to nest

PM_SNOOP_TLBIE TLBIE snoop

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 178

Event Description

PM_DSLB_MISS Data SLB Misses, total of all segment sizes

PM_ISLB_MISS Instruction SLB Miss Total of all segment sizes

PM_LS0_ERAT_MISS_PREF LS0 Erat miss due to prefetch

PM_LS1_ERAT_MISS_PREF LS1 Erat miss due to prefetch

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 179

Event Description

PM_LSU_SRQ_SYNC A sync in the SRQ ended

PM_LSU_SET_MPRED Line already in cache at reload time

PM_LSU_SRQ_SYNC_CYC A sync is in the SRQ (edge detect to count)

PM_SEC_ERAT_HIT Secondary ERAT Hit

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 180

Event Description

PM_UP_PREF_L3 Micropartition prefetch

PM_UP_PREF_POINTER Micropartition pointer prefetches

PM_DC_COLLISIONS DATA Cache collisions

PM_TEND_PEND_CYC TEND latency per thread

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 181

Event Description

PM_TM_FAIL_DISALLOW TM fail disallow

PM_TM_FAIL_TLBIE TLBIE hit bloom filter

PM_TM_FAIL_TX_CONFLICT Transactional conflict from LSU, whatever gets reported
to TEXAS

PM_TM_FAIL_NON_TX_CONFLICT Non transactional conflict from LSU, whatever gets
reported to TEXAS

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 182

Appendix B. Derived metrics, events, and groups supported on POWER8 architecture 249

Event Description

PM_LSU0_TM_L1_HIT Load TM hit in L1

PM_LSU1_TM_L1_HIT Load TM hit in L1

PM_LSU2_TM_L1_HIT Load TM hit in L1

PM_LSU3_TM_L1_HIT Load TM hit in L1

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 183

Event Description

PM_LSU0_TM_L1_MISS Load TM L1 miss

PM_LSU1_TM_L1_MISS Load TM L1 miss

PM_LSU2_TM_L1_MISS Load TM L1 miss

PM_LSU3_TM_L1_MISS Load TM L1 miss

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 184

Event Description

PM_LSU0_TMA_REQ_L2 Addrs only req to L2 only on the first one indication that
Load footprint is not expanding

PM_LSU1_TMA_REQ_L2 Address only req to L2 only on the first one, indication
that Load footprint is not expanding

PM_LSU2_TMA_REQ_L2 Addrs only req to L2 only on the first one, indication that
Load footprint is not expanding

PM_LSU3_TMA_REQ_L2 Addrs only req to L2 only on the first one, indication that
Load footprint is not expanding

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 185

Event Description

PM_LSU0_L1_CAM_CANCEL LS0 L1 tm cam cancel

PM_LSU1_L1_CAM_CANCEL LS1 L1 TM cam cancel

PM_LSU2_L1_CAM_CANCEL LS2 L1 TM cam cancel

PM_LSU3_L1_CAM_CANCEL LS3 L1 TM cam cancel

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 186

Event Description

PM_TM_FAIL_CON_TM TEXAS fail reason @ completion

PM_FAV_TBEGIN Dispatch time Favored tbegin

PM_TM_FAIL_FOOTPRINT_OVERFLOW TEXAS fail reason @ completion

PM_TM_FAIL_SELF TEXAS fail reason @ completion

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 187

250 High Performance Computing Toolkit: Installation and Usage Guide

Event Description

PM_TM_TRANS_RUN_CYC Run cycles in transactional state

PM_TM_TRESUME TM resume

PM_TM_TRANS_RUN_INST Instructions completed in transactional state

PM_TM_TSUSPEND TM suspend

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 188

Event Description

PM_TM_TBEGIN TM nested tbegin

PM_TM_TX_PASS_RUN_CYC Cycles spent in successful transactions

PM_TM_TRANS_RUN_INST Instructions completed in transactional state

PM_TM_TX_PASS_RUN_INST Run instructions spent in successful transactions.

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 189

Event Description

PM_TM_FAIL_CONF_NON_TM TEXAS fail reason @ completion

PM_TM_BEGIN_ALL TM any tbegin

PM_L2_TM_ST_ABORT_SISTER TM marked store abort

PM_TM_END_ALL TM any tend

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 190

Event Description

PM_NESTED_TEND Completion time nested tend

PM_NON_FAV_TBEGIN Dispatch time non favored tbegin

PM_OUTER_TBEGIN Completion time outer tbegin

PM_OUTER_TEND Completion time outer tend

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 191

Event Description

PM_MEM_READ Reads from Memory from this lpar (includes
data/instruction/translate/l1 prefetch/instruction
prefetch). Includes L4

PM_MEM_PREF Memory prefetch for this lpar. Includes L4

PM_MEM_RWITM Memory rwitm for this lpar

PM_MEM_CO Memory castouts from this lpar

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 192

Appendix B. Derived metrics, events, and groups supported on POWER8 architecture 251

Event Description

PM_CHIP_PUMP_CPRED Initial and Final Pump Scope was chip pump
(prediction=correct) for all data types excluding data
prefetch (demand load, instruction prefetch, instruction
fetch, translate)

PM_GRP_PUMP_CPRED Initial and Final Pump Scope and data sourced across
this scope was group pump for all data types excluding
data prefetch (demand load, instruction prefetch,
instruction fetch, translate)

PM_SYS_PUMP_CPRED Initial and Final Pump Scope was system pump for all
data types excluding data prefetch (demand load,
instruction prefetch, instruction fetch, translate)

PM_PUMP_MPRED Pump misprediction. Counts across all types of pumps
for all data types excluding data prefetch (demand load,
instruction prefetch, instruction fetch, xlate)

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 193

Event Description

PM_PUMP_CPRED Pump prediction correct. Counts across all types of
pumps for all data types excluding data prefetch
(demand load/instruction prefetch/instruction
fetch/translate)

PM_GRP_PUMP_MPRED Final Pump Scope (Group) ended up either larger or
smaller than Initial Pump Scope for all data types
excluding data prefetch (demand load, instruction
prefetch, instruction fetch, translate)

PM_SYS_PUMP_MPRED Final Pump Scope (system) mispredicted. Either the
original scope was too small (Chip/Group) or the
original scope was System and it should have been
smaller. Counts for all data types excluding data prefetch
(demand load, instruction prefetch, instruction fetch,
translate)

PM_SYS_PUMP_MPRED_RTY Final Pump Scope (system) ended up larger than Initial
Pump Scope (Chip/Group) for all data types excluding
data prefetch (demand load, instruction prefetch,
instruction fetch, xlate)

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 194

Event Description

PM_DATA_CHIP_PUMP_CPRED Initial and Final Pump Scope was chip pump
(prediction=correct) for a demand load

PM_DATA_GRP_PUMP_CPRED Initial and Final Pump Scope was group pump
(prediction=correct) for a demand load

PM_DATA_SYS_PUMP_CPRED Initial and Final Pump Scope was system pump
(prediction=correct) for a demand load

PM_DATA_SYS_PUMP_MPRED_RTY Final Pump Scope (system) ended up larger than Initial
Pump Scope (Chip/Group) for a demand load

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 195

252 High Performance Computing Toolkit: Installation and Usage Guide

Event Description

PM_GRP_PUMP_MPRED_RTY Final Pump Scope (Group) ended up larger than Initial
Pump Scope (Chip) for all data types excluding data
prefetch (demand load, instruction prefetch, instruction
fetch, translate)

PM_DATA_GRP_PUMP_MPRED Final Pump Scope (Group) ended up either larger or
smaller than Initial Pump Scope for a demand load

PM_DATA_SYS_PUMP_MPRED Final Pump Scope (system) mispredicted. Either the
original scope was too small (Chip/Group) or the
original scope was System and it should have been
smaller. Counts for a demand load

PM_DATA_PUMP_MPRED Pump misprediction. Counts across all types of pumps
for a demand load

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 196

Event Description

PM_INST_CHIP_PUMP_CPRED Initial and Final Pump Scope was chip pump
(prediction=correct) for an instruction fetch

PM_INST_GRP_PUMP_CPRED Initial and Final Pump Scope was group pump
(prediction=correct) for an instruction fetch

PM_INST_SYS_PUMP_CPRED Initial and Final Pump Scope was system pump
(prediction=correct) for an instruction fetch

PM_INST_SYS_PUMP_MPRED_RTY Final Pump Scope (system) ended up larger than Initial
Pump Scope (Chip/Group) for an instruction fetch

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 197

Event Description

PM_INST_GRP_PUMP_MPRED_RTY Final Pump Scope (Group) ended up larger than Initial
Pump Scope (Chip) for an instruction fetch

PM_INST_GRP_PUMP_MPRED Final Pump Scope (Group) ended up either larger or
smaller than Initial Pump Scope for an instruction fetch

PM_INST_SYS_PUMP_MPRED Final Pump Scope (system) mispredicted. Either the
original scope was too small (Chip/Group) or the
original scope was System and it should have been
smaller. Counts for an instruction fetch

PM_INST_PUMP_MPRED Pump misprediction. Counts across all types of pumps
for an instruction fetch

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 198

Event Description

PM_ALL_CHIP_PUMP_CPRED Initial and Final Pump Scope was chip pump
(prediction=correct) for all data types (demand load, data
prefetch, instruction prefetch, instruction fetch, translate)

PM_ALL_GRP_PUMP_CPRED Initial and Final Pump Scope and data sourced across
this scope was group pump for all data types (demand
load, data prefetch, instruction prefetch, instruction fetch,
translate)

PM_ALL_SYS_PUMP_CPRED Initial and Final Pump Scope was system pump for all
data types (demand load, data prefetch, instruction
prefetch, instruction fetch, translate)

Appendix B. Derived metrics, events, and groups supported on POWER8 architecture 253

Event Description

PM_ALL_PUMP_MPRED Pump misprediction. Counts across all types of pumps
for all data types (demand load, data prefetch, instruction
prefetch, instruction fetch, translate)

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 199

Event Description

PM_ALL_PUMP_CPRED Pump prediction correct. Counts across all types of
pumps for all data types (demand load, data prefetch,
instruction prefetch, instruction fetch, translate).

PM_ALL_GRP_PUMP_MPRED Final Pump Scope (Group) ended up either larger or
smaller than Initial Pump Scope for all data types
(demand load, data prefetch, instruction prefetch,
instruction fetch, translate)

PM_ALL_SYS_PUMP_MPRED Final Pump Scope (system) mispredicted. Either the
original scope was too small (Chip/Group) or the
original scope was System and it should have been
smaller. Counts for all data types (demand load, data
prefetch, instruction prefetch, instruction fetch, translate)

PM_ALL_SYS_PUMP_MPRED_RTY Final Pump Scope (system) ended up larger than Initial
Pump Scope (Chip/Group) for all data types (demand
load, data prefetch, instruction prefetch, instruction fetch,
translate

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 200

Event Description

PM_DATA_ALL_CHIP_PUMP_CPRED Initial and Final Pump Scope was chip pump
(prediction=correct) for either demand loads or data
prefetch

PM_DATA_ALL_GRP_PUMP_CPRED Initial and Final Pump Scope was group pump
(prediction=correct) for either demand loads or data
prefetch

PM_DATA_ALL_SYS_PUMP_CPRED Initial and Final Pump Scope was system pump
(prediction=correct) for either demand loads or data
prefetch

PM_DATA_ALL_SYS_PUMP_MPRED_RTY Final Pump Scope (system) ended up larger than Initial
Pump Scope (Chip/Group) for either demand loads or
data prefetch

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 201

Event Description

PM_ALL_GRP_PUMP_MPRED_RTY Final Pump Scope (Group) ended up larger than Initial
Pump Scope (Chip) for all data types (demand load, data
prefetch, instruction prefetch, instruction fetch, translate)

PM_DATA_ALL_GRP_PUMP_MPRED Final Pump Scope (Group) ended up either larger or
smaller than Initial Pump Scope for either demand loads
or data prefetch

PM_DATA_ALL_SYS_PUMP_MPRED Final Pump Scope (system) mispredicted. Either the
original scope was too small (Chip/Group) or the
original scope was System and it should have been
smaller. Counts for either demand loads or data prefetch

PM_DATA_ALL_PUMP_MPRED Pump misprediction. Counts across all types of pumps
for either demand loads or data prefetch

254 High Performance Computing Toolkit: Installation and Usage Guide

Event Description

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 202

Event Description

PM_INST_ALL_CHIP_PUMP_CPRED Initial and Final Pump Scope was chip pump
(prediction=correct) for instruction fetches and prefetches

PM_INST_ALL_GRP_PUMP_CPRED Initial and Final Pump Scope was group pump
(prediction=correct) for instruction fetches and prefetches

PM_INST_ALL_SYS_PUMP_CPRED Initial and Final Pump Scope was system pump
(prediction=correct) for instruction fetches and prefetches

PM_INST_ALL_SYS_PUMP_MPRED_RTY Final Pump Scope (system) ended up larger than Initial
Pump Scope (Chip/Group) for instruction fetches and
prefetches

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 203

Event Description

PM_INST_ALL_GRP_PUMP_MPRED_RTY Final Pump Scope (Group) ended up larger than Initial
Pump Scope (Chip) for instruction fetches and prefetches

PM_INST_ALL_GRP_PUMP_MPRED Final Pump Scope (Group) ended up either larger or
smaller than Initial Pump Scope for instruction fetches
and prefetches

PM_INST_ALL_SYS_PUMP_MPRED Final Pump Scope (system) mispredicted. Either the
original scope was too small (Chip/Group) or the
original scope was System and it should have been
smaller. Counts for instruction fetches and prefetches

PM_INST_ALL_PUMP_MPRED Pump misprediction. Counts across all types of pumps
for instruction fetches and prefetches

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 204

Event Description

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_MRK_FAB_RSP_BKILL_CYC Cycles L2 RC took for a bkill

PM_MRK_FAB_RSP_CLAIM_RTY Sampled store did a rwitm and got a rty

PM_MRK_FAB_RSP_BKILL Marked store had to do a bkill

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 205

Event Description

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_MRK_FAB_RSP_DCLAIM_CYC Cycles L2 RC took for a dclaim

PM_MRK_FAB_RSP_DCLAIM Marked store had to do a dclaim

PM_MRK_FAB_RSP_RD_RTY Sampled L2 reads retry count

PM_RUN_INST_CMPL Run instructions

Appendix B. Derived metrics, events, and groups supported on POWER8 architecture 255

Event Description

PM_RUN_CYC Run cycles

Group 206

Event Description

PM_MRK_FAB_RSP_RD_T_INTV Sampled Read got a T intervention

PM_MRK_FAB_RSP_RWITM_RTY Sampled store did a rwitm and got a rty

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_MRK_FAB_RSP_RWITM_CYC Cycles L2 RC took for a rwitm

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 207

Event Description

PM_LSU0_LARX_FIN Larx finished in LSU pipe0

PM_LSU1_LARX_FIN Larx finished in LSU pipe1

PM_LSU2_LARX_FIN Larx finished in LSU pipe2

PM_LSU3_LARX_FIN Larx finished in LSU pipe3

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 208

Event Description

PM_STCX_FAIL STCX failed

PM_STCX_LSU STCX executed reported at sent to nest

PM_LARX_FIN Larx finished

PM_LSU_SRQ_EMPTY_CYC ALL threads srq empty

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 209

Event Description

PM_IERAT_RELOAD Number of I ERAT reloads

PM_IERAT_RELOAD_4K IERAT Miss

PM_IERAT_RELOAD_64K IERAT Reloaded (Miss) for a 64k page

PM_IERAT_RELOAD_16M IERAT Reloaded (Miss) for a 16M page

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 210

Event Description

PM_CYC Cycles

PM_LSU_DERAT_MISS DERAT Reloaded due to a DERAT miss

PM_DTLB_MISS Data PTEG reload

PM_ITLB_MISS ITLB Reloaded

PM_RUN_INST_CMPL Run instructions

256 High Performance Computing Toolkit: Installation and Usage Guide

Event Description

PM_RUN_CYC Run cycles

Group 211

Event Description

PM_DATA_PUMP_CPRED Pump prediction correct. Counts across all types of
pumps for a demand load

PM_TLB_MISS TLB Miss (I + D)

PM_TLBIE_FIN TLBIE finished

PM_LSU_ERAT_MISS_PREF Erat miss due to prefetch, on either pipe

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 212

Event Description

PM_TABLEWALK_CYC Cycles when a tablewalk (I or D) is active

PM_TABLEWALK_CYC_PREF Tablewalk qualified for pte prefetches

PM_DATA_TABLEWALK_CYC Tablwalk Cycles (could be 1 or 2 active)

PM_LD_MISS_L1 Load Missed L1

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 213

Event Description

PM_INST_IMC_MATCH_CMPL IMC Match Count (Not architected in P8)

PM_INST_FROM_L1 Instruction fetches from L1

PM_INST_IMC_MATCH_DISP Matched Instructions Dispatched

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 214

Event Description

PM_EE_OFF_EXT_INT EE off and external interrupt

PM_EXT_INT External interrupt

PM_TB_BIT_TRANS Timebase event

PM_CYC Cycles

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 215

Event Description

PM_L1_DEMAND_WRITE Instruction demand sectors written into IL1

PM_IC_PREF_WRITE Instruction prefetch written into IL1

PM_IBUF_FULL_CYC Cycles No room in ibuff

Appendix B. Derived metrics, events, and groups supported on POWER8 architecture 257

Event Description

PM_BANK_CONFLICT Read blocked due to interleave conflict. The ifar logic
will detect an interleave conflict and kill the data that
was read that cycle.

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 216

Event Description

PM_IC_DEMAND_L2_BHT_REDIRECT L2 I cache demand request due to BHT redirect, branch
redirect (2 bubbles 3 cycles)

PM_IC_DEMAND_L2_BR_REDIRECT L2 I cache demand request due to branch Mispredict (15
cycle path)

PM_IC_DEMAND_REQ Demand Instruction fetch request

PM_IC_INVALIDATE Ic line invalidated

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 217

Event Description

PM_GRP_IC_MISS_NONSPEC Group experienced non speculative I cache miss

PM_L1_ICACHE_MISS Demand iCache Miss

PM_IC_RELOAD_PRIVATE Reloading line was brought in private for a specific
thread. Most lines are brought in shared for all eight
threads. If RA does not match then invalidates and then
brings it shared to other thread. In P7 line brought in
private, then line was invalidate

PM_LSU_L1_SW_PREF Software L1 Prefetches, including SW Transient
Prefetches, on both pipes

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 218

Event Description

PM_IC_PREF_CANCEL_HIT Prefetch canceled due to icache hit

PM_IC_PREF_CANCEL_L2 L2 Squashed request

PM_IC_PREF_CANCEL_PAGE Prefetch canceled due to page boundary

PM_IC_PREF_REQ Instruction prefetch requests

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 219

Event Description

PM_DATA_ALL_GRP_PUMP_MPRED_RTY Final Pump Scope (Group) ended up larger than Initial
Pump Scope (Chip) for either demand loads or data
prefetch

PM_ST_FWD Store forwards that finished

PM_L1_ICACHE_RELOADED_PREF Counts all Icache prefetch reloads (includes demand
turned into prefetch)

PM_L1_ICACHE_RELOADED_ALL Counts all Icache reloads includes demand, prefetchm
prefetch turned into demand and demand turned into
prefetch

258 High Performance Computing Toolkit: Installation and Usage Guide

Event Description

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 220

Event Description

PM_1LPAR_CYC Number of cycles in single lpar mode. All threads in the
core are assigned to the same lpar.

PM_2LPAR_CYC Cycles in 2 lpar mode. Threads 0 3 belong to Lpar0 and
threads 4 7 belong to Lpar1

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_4LPAR_CYC Number of cycles in 4 LPAR mode. Threads 0 1 belong to
lpar0, threads 2 3 belong to lpar1, threads 4 5 belong to
lpar2, and threads 6 7 belong to lpar3

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 221

Event Description

PM_FUSION_TOC_GRP0_1 One pair of instructions fused with TOC in Group0

PM_FUSION_TOC_GRP0_2 Two pairs of instructions fused with TOCin Group0

PM_FUSION_TOC_GRP0_3 Three pairs of instructions fused with TOC in Group0

PM_FUSION_TOC_GRP1_1 One pair of instructions fused with TOX in Group1

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 222

Event Description

PM_FUSION_VSX_GRP0_1 One pair of instructions fused with VSX in Group0

PM_FUSION_VSX_GRP0_2 Two pairs of instructions fused with VSX in Group0

PM_FUSION_VSX_GRP0_3 Three pairs of instructions fused with VSX in Group0

PM_FUSION_VSX_GRP1_1 One pair of instructions fused with VSX in Group1

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 223

Event Description

PM_GCT_UTIL_1_2_ENTRIES GCT Utilization 1 2 entries

PM_GCT_UTIL_3_6_ENTRIES GCT Utilization 3 6 entries

PM_GCT_UTIL_7_10_ENTRIES GCT Utilization 7 10 entries

PM_GCT_UTIL_11_14_ENTRIES GCT Utilization 11 14 entries

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 224

Event Description

PM_GCT_UTIL_15_17_ENTRIES GCT Utilization 15 17 entries

Appendix B. Derived metrics, events, and groups supported on POWER8 architecture 259

Event Description

PM_GCT_UTIL_18_ENTRIES GCT Utilization 18+ entries

PM_DISP_HOLD_GCT_FULL Dispatch Hold Due to no space in the GCT

PM_GCT_MERGE Group dispatched on a merged GCT empty. GCT entries
can be merged only within the same thread

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 225

Event Description

PM_STALL_END_GCT_EMPTY Count ended because GCT went empty

PM_GCT_EMPTY_CYC No itags assigned either thread (GCT Empty)

PM_CYC Cycles

PM_FLUSH_DISP Dispatch flush

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 226

Event Description

PM_FPU0_FCONV Convert instruction executed

PM_FPU0_FEST Estimate instruction executed

PM_FPU0_FRSP Round to single precision instruction executed

PM_LSU_LDF FPU loads only on LS2/LS3 ie LU0/LU1

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 227

Event Description

PM_FPU1_FCONV Convert instruction executed

PM_FPU1_FEST Estimate instruction executed

PM_FPU1_FRSP Round to single precision instruction executed

PM_LSU_LDX Vector loads can issue only on LS2/LS3

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 228

Event Description

PM_GRP_NON_FULL_GROUP GROUPs where we did not have 6 non branch
instructions in the group(ST mode), in SMT mode 3 non
branches

PM_GRP_TERM_2ND_BRANCH There were enough instructions in the Ibuffer, but 2nd
branch ends group

PM_GRP_TERM_FPU_AFTER_BR There were enough instructions in the Ibuffer, but FPU
OP IN same group after a branch terminates a group,
cant do partial flushes

PM_GRP_TERM_NOINST Do not fill every slot in the group, Not enough
instructions in the Ibuffer. This includes cases where the
group started with enough instructions, but some got
knocked out by a cache miss or branch redirect (which
would also empty the Ibuffer).

PM_RUN_INST_CMPL Run instructions

260 High Performance Computing Toolkit: Installation and Usage Guide

Event Description

PM_RUN_CYC Run cycles

Group 229

Event Description

PM_SHL_CREATED Store Hit Load Table Entry Created

PM_SHL_ST_CONVERT Store Hit Load Table Read Hit with entry Enabled

PM_SHL_ST_DISABLE Store Hit Load Table Read Hit with entry Disabled (entry
was disabled due to the entry shown to not prevent the
flush)

PM_EAT_FULL_CYC Cycles No room in EAT

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 230

Event Description

PM_GRP_BR_MPRED_NONSPEC Group experienced non speculative branch redirect

PM_GRP_TERM_OTHER There were enough instructions in the Ibuffer, but the
group terminated early for some other reason, most likely
due to a First or Last.

PM_GRP_TERM_SLOT_LIMIT There were enough instructions in the Ibuffer, but 3 src
RA/RB/RC , 2 way crack caused a group termination

PM_EAT_FORCE_MISPRED XL form branch was mispredicted due to the predicted
target address missing from EAT. The EAT forces a
mispredict in this case since there is no predicated target
to validate. This is a rare case that may occur when the
EAT is full and a branch is issue

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 231

Event Description

PM_CLB_HELD CLB Hold: Any Reason

PM_LINK_STACK_INVALID_PTR A flush were LS ptr is invalid, results in a pop , A lot of
interrupts between push and pops

PM_LINK_STACK_WRONG_ADD_PRED Link stack predicts wrong address, because of link stack
design limitation

PM_ISU_REF_FXU FXU ISU reject from either pipe

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 232

Event Description

PM_DATA_GRP_PUMP_MPRED_RTY Final Pump Scope (Group) ended up larger than Initial
Pump Scope (Chip) for a demand load

PM_UTHROTTLE Cycles in which instruction issue throttle was active in
ISU

PM_IFETCH_THROTTLE Cycles in which Instruction fetch throttle was active

PM_IFU_L2_TOUCH L2 touch to update MRU on a line

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Appendix B. Derived metrics, events, and groups supported on POWER8 architecture 261

Group 233

Event Description

PM_ISU_REJECTS_ALL All isu rejects could be more than 1 per cycle

PM_ISU_REJECT_SAR_BYPASS Reject because of SAR bypass

PM_ISU_REJECT_SRC_NA ISU reject due to source not available

PM_ISU_REJECT_RES_NA ISU reject due to resource not available

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 234

Event Description

PM_LSU0_STORE_REJECT LS0 store reject

PM_LSU1_STORE_REJECT LS1 store reject

PM_LSU2_REJECT LSU2 reject

PM_LSU_REJECT_LHS LSU Reject due to LHS (up to 4 per cycle)

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 235

Event Description

PM_LSU_REJECT_LMQ_FULL LSU reject due to LMQ full (4 per cycle)

PM_LSU_REJECT_ERAT_MISS LSU Reject due to ERAT (up to 4 per cycles)

PM_LSU2_REJECT LSU2 reject

PM_LSU3_REJECT LSU3 reject

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 236

Event Description

PM_LSU_REJECT LSU Reject (up to 4 per cycle)

PM_LSU1_REJECT LSU1 reject

PM_MRK_LSU_REJECT_ERAT_MISS LSU marked reject due to ERAT (up to 2 per cycle)

PM_MRK_LSU_REJECT LSU marked reject (up to 2 per cycle)

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 237

Event Description

PM_ISU_REF_FX0 FX0 ISU reject

PM_ISU_REF_LS0 LS0 ISU reject

PM_ISU_REF_LS1 LS1 ISU reject

PM_ISU_REF_LS2 LS2 ISU reject

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 238

262 High Performance Computing Toolkit: Installation and Usage Guide

Event Description

PM_ISU_REF_LS3 LS3 ISU reject

PM_ISU_REJ_VS0 VS0 ISU reject

PM_ISU_REJ_VS1 VS1 ISU reject

PM_ISU_REF_FX1 FX1 ISU reject

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 239

Event Description

PM_SWAP_CANCEL SWAP cancel, rtag not available

PM_SWAP_CANCEL_GPR SWAP cancel , rtag not available for gpr

PM_SWAP_COMPLETE SWAP cast in completed

PM_SWAP_COMPLETE_GPR SWAP cast in completed fpr gpr

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 240

Event Description

PM_MEM_LOC_THRESH_LSU_MED Local memory above threshold for data prefetch

PM_CASTOUT_ISSUED Castouts issued

PM_CASTOUT_ISSUED_GPR Castouts issued GPR

PM_MEM_LOC_THRESH_LSU_HIGH Local memory above threshold for LSU medium

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 241

Event Description

PM_TEND_PEND_CYC TEND latency per thread

PM_TABORT_TRECLAIM Completion time tabortnoncd, tabortcd, treclaim

PM_LSU_NCLD Count at finish so can return only on LS0 or LS1

PM_CYC Cycles

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 242

Event Description

PM_ISYNC Isync count per thread

PM_LWSYNC Threaded version, IC Misses where we got EA dir hit but
no sector valids were on. ICBI took line out.

PM_LWSYNC_HELD LWSYNC held at dispatch

PM_FLUSH_DISP_SYNC Dispatch Flush: Sync

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 243

Appendix B. Derived metrics, events, and groups supported on POWER8 architecture 263

Event Description

PM_MRK_INST_ISSUED Marked instruction issued

PM_MRK_INST_DECODED Marked instruction decoded

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_MRK_INST_FROM_L3MISS Marked instruction was reloaded from a location beyond
the local chiplet

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 244

Event Description

PM_MRK_INST_DISP The thread has dispatched a randomly sampled marked
instruction

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_MRK_INST_FIN Marked instruction finished

PM_MRK_INST_TIMEO Marked Instruction finish timeout (instruction lost)

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 245

Event Description

PM_GRP_MRK Instruction Marked

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_LSU_MRK_DERAT_MISS DERAT Reloaded (Miss)

PM_MRK_GRP_CMPL Marked instruction finished (completed)

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 246

Event Description

PM_GRP_MRK Instruction Marked

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_MRK_GRP_NTC Marked group ntc cycles.

PM_MRK_GRP_IC_MISS Marked Group experienced I cache miss

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 247

Event Description

PM_MRK_L1_ICACHE_MISS Sampled Instruction suffered an icache Miss

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_MULT_MRK Multiple marked instructions

PM_MRK_INST_TIMEO Marked Instruction finish timeout (instruction lost)

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

264 High Performance Computing Toolkit: Installation and Usage Guide

Group 248

Event Description

PM_MRK_BR_CMPL Branch Instruction completed

PM_MRK_BRU_FIN BRU marked instruction finish

PM_MRK_BACK_BR_CMPL Marked branch instruction completed with a target
address less than current instruction address

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 249

Event Description

PM_MRK_BR_TAKEN_CMPL Marked Branch Taken completed

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_MRK_BR_MPRED_CMPL Marked Branch Mispredicted

PM_BR_MRK_2PATH Marked two path branch

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 250

Event Description

PM_SYNC_MRK_BR_LINK Marked Branch and link branch that can cause a
synchronous interrupt

PM_BR_PRED_LSTACK_CMPL Completion Time Event. This event can also be calculated
from the direct bus as follows: if_pc_br0_br_pred(0) AND
(not if_pc_br0_pred_type).

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_MRK_INST_CMPL Marked instruction completed

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 251

Event Description

PM_SYNC_MRK_BR_MPRED Marked Branch mispredict that can cause a synchronous
interrupt

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_BR_PRED_CR_CMPL Completion Time Event. This event can also be calculated
from the direct bus as follows: if_pc_br0_br_pred(1)='1'.

PM_BR_PRED_CCACHE_CMPL Completion Time Event. This event can also be calculated
from the direct bus as follows: if_pc_br0_br_pred(0) AND
if_pc_br0_pred_type.

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 252

Event Description

PM_MRK_ST_CMPL Marked store completed and sent to nest

Appendix B. Derived metrics, events, and groups supported on POWER8 architecture 265

Event Description

PM_MRK_L2_RC_DISP Marked Instruction RC dispatched in L2

PM_MRK_ST_FWD Marked st forwards

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 253

Event Description

PM_MRK_LSU_FLUSH_LRQ Flush: (marked) LRQ

PM_MRK_LSU_FLUSH_SRQ Flush: (marked) SRQ

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_LSU_FLUSH_UST Unaligned Store Flush on either pipe

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 254

Event Description

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_MRK_LSU_FLUSH Flush: (marked) : All Cases

PM_MRK_LSU_FLUSH_ULD Flush: (marked) Unaligned Load

PM_MRK_LSU_FLUSH_UST Flush: (marked) Unaligned Store

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 255

Event Description

PM_MRK_FIN_STALL_CYC Marked instruction Finish Stall cycles (marked finish after
NTC) (use edge detect to count)

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_MRK_STCX_FAIL Marked stcx failed

PM_MRK_LARX_FIN Larx finished

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 256

Event Description

PM_MRK_RUN_CYC Marked run cycles

PM_MRK_DFU_FIN Decimal Unit marked Instruction Finish

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_MRK_LSU_FIN LSU marked instr finish

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 257

266 High Performance Computing Toolkit: Installation and Usage Guide

Event Description

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_MRK_FXU_FIN FXU marked instruction finish

PM_MRK_CRU_FIN IFU non branch finished

PM_CRU_FIN IFU Finished a (non branch) instruction

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 258

Event Description

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_MRK_NTF_FIN Marked next to finish instruction finished

PM_MRK_VSU_FIN VSU marked instr finish

PM_ISU_REJ_VSU VSU ISU reject from either pipe

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 259

Event Description

PM_MRK_L1_RELOAD_VALID Marked demand reload

PM_LSU_L1_PREF HW initiated, include SW streaming forms as well,
include SW streams as a separate event

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_MRK_DCACHE_RELOAD_INTV Combined Intervention event

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 260

Event Description

PM_SYNC_MRK_L2HIT Marked L2 Hits that can throw a synchronous interrupt

PM_MRK_L2_RC_DISP Marked Instruction RC dispatched in L2

PM_MRK_L2_RC_DONE Marked RC done

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 261

Event Description

PM_SYNC_MRK_PROBE_NOP Marked probeNops which can cause synchronous
interrupts

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_MRK_BACK_BR_CMPL Marked branch instruction completed with a target
address less than current instruction address

PM_PROBE_NOP_DISP ProbeNops dispatched

PM_RUN_INST_CMPL Run instructions

Appendix B. Derived metrics, events, and groups supported on POWER8 architecture 267

Event Description

PM_RUN_CYC Run cycles

Group 262

Event Description

PM_SYNC_MRK_FX_DIVIDE Marked fixed point divide that can cause a synchronous
interrupt

PM_MRK_FXU_FIN FXU marked instruction finish

PM_ISU_REF_FX0 FX0 ISU reject

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 263

Event Description

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_MRK_DERAT_MISS_64K Marked Data ERAT Miss (Data TLB Access) page size
64K

PM_MRK_DERAT_MISS_16M Marked Data ERAT Miss (Data TLB Access) page size
16M

PM_MRK_DERAT_MISS_16G Marked Data ERAT Miss (Data TLB Access) page size
16G

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 264

Event Description

PM_MRK_DERAT_MISS_4K Marked Data ERAT Miss (Data TLB Access) page size 4K

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_MRK_DERAT_MISS Erat Miss (TLB Access) All page sizes

PM_MRK_DTLB_MISS_16M Marked Data TLB Miss page size 16M

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 265

Event Description

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_MRK_DTLB_MISS_4K Marked Data TLB Miss page size 4k

PM_MRK_DTLB_MISS_64K Marked Data TLB Miss page size 64K

PM_MRK_DTLB_MISS Marked dtlb miss

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Group 266

268 High Performance Computing Toolkit: Installation and Usage Guide

Event Description

PM_MRK_DTLB_MISS_16G Marked Data TLB Miss page size 16G

PM_MRK_DTLB_MISS_4K Marked Data TLB Miss page size 4k

PM_DTLB_MISS Data PTEG reload

PM_INST_CMPL Number of PowerPC Instructions that completed. PPC
Instructions Finished (completed).

PM_RUN_INST_CMPL Run instructions

PM_RUN_CYC Run cycles

Appendix B. Derived metrics, events, and groups supported on POWER8 architecture 269

270 High Performance Computing Toolkit: Installation and Usage Guide

Appendix C. HPC Toolkit environment variables

Table 23 is an alphabetical listing all of the HPC Toolkit environment variables and
the command or API for which they are used. For a description of each
environment variable, see the referenced command or API.

Table 23. HPC Toolkit environment variables

Environment variable Used by:

GPM_EVENT_SET
GPM_METRIC_SET

“gpmlist - Lists the available events and metrics” on page 114

GPM_ASC_OUTPUT
GPM_ENABLE_TRACE
GPM_PRINT
GPM_STDOUT
GPM_VIZ_OUTPUT

“gpm_terminate - Generate GPU Performance Monitoring statistics and
trace files and shut down the GPM runtime environment” on page 142

HPC_EXCEPTION_COUNT “hpcrun - Launch a program to collect profiling or trace data” on page 122

HPC_EXCEPTION_METRIC “hpcrun - Launch a program to collect profiling or trace data” on page 122

HPC_OUTPUT_NAME v “hpccount - Report hardware performance counter statistics for an
application” on page 116

v “hpcstat - Reports a system-wide summary of hardware performance
counter statistics” on page 124

v “hpmInit, f_hpminit - Initialize the Hardware Performance Monitor
(HPM) run-time environment” on page 153

HPC_TRACE_MAX_BUFFERS “hpcrun - Launch a program to collect profiling or trace data” on page 122

HPC_TRACE_STORE “hpcrun - Launch a program to collect profiling or trace data” on page 122

HPC_UNIQUE_FILE_NAME v “hpccount - Report hardware performance counter statistics for an
application” on page 116

v “hpcstat - Reports a system-wide summary of hardware performance
counter statistics” on page 124

v “hpmInit, f_hpminit - Initialize the Hardware Performance Monitor
(HPM) run-time environment” on page 153

HPM_AGGREGATE v “hpccount - Report hardware performance counter statistics for an
application” on page 116

v “hpcrun - Launch a program to collect profiling or trace data” on page
122

v “hpmInit, f_hpminit - Initialize the Hardware Performance Monitor
(HPM) run-time environment” on page 153

HPM_ASC_OUTPUT v “hpccount - Report hardware performance counter statistics for an
application” on page 116

v “hpcstat - Reports a system-wide summary of hardware performance
counter statistics” on page 124

v “hpmInit, f_hpminit - Initialize the Hardware Performance Monitor
(HPM) run-time environment” on page 153

© Copyright IBM Corp. 2008, 2015 271

|
|
|

|
|
|
|
|

|
|

Table 23. HPC Toolkit environment variables (continued)

Environment variable Used by:

HPM_COUNTING_MODE v “hpccount - Report hardware performance counter statistics for an
application” on page 116

v “hpcstat - Reports a system-wide summary of hardware performance
counter statistics” on page 124

v “hpmInit, f_hpminit - Initialize the Hardware Performance Monitor
(HPM) run-time environment” on page 153

HPM_ENABLE_GPM Instructs the HPM module to drive GPU event and metric profiling.

HPM_EVENT_SET v “hpccount - Report hardware performance counter statistics for an
application” on page 116

v “hpcstat - Reports a system-wide summary of hardware performance
counter statistics” on page 124

v “hpmInit, f_hpminit - Initialize the Hardware Performance Monitor
(HPM) run-time environment” on page 153

HPM_EXCLUSIVE_VALUES “hpmInit, f_hpminit - Initialize the Hardware Performance Monitor (HPM)
run-time environment” on page 153

HPM_PRINT_FORMULA v “hpccount - Report hardware performance counter statistics for an
application” on page 116

v “hpcstat - Reports a system-wide summary of hardware performance
counter statistics” on page 124

v “hpmInit, f_hpminit - Initialize the Hardware Performance Monitor
(HPM) run-time environment” on page 153

HPM_PRINT_TASK v “hpccount - Report hardware performance counter statistics for an
application” on page 116

v “hpmInit, f_hpminit - Initialize the Hardware Performance Monitor
(HPM) run-time environment” on page 153

HPM_ROUND_ROBIN_CLUSTER v “hpccount - Report hardware performance counter statistics for an
application” on page 116

v “hpmInit, f_hpminit - Initialize the Hardware Performance Monitor
(HPM) run-time environment” on page 153

HPM_STDOUT v “hpccount - Report hardware performance counter statistics for an
application” on page 116

v “hpcstat - Reports a system-wide summary of hardware performance
counter statistics” on page 124

v “hpmInit, f_hpminit - Initialize the Hardware Performance Monitor
(HPM) run-time environment” on page 153

HPM_VIZ_OUTPUT v “hpccount - Report hardware performance counter statistics for an
application” on page 116

v “hpcstat - Reports a system-wide summary of hardware performance
counter statistics” on page 124

v “hpmInit, f_hpminit - Initialize the Hardware Performance Monitor
(HPM) run-time environment” on page 153

272 High Performance Computing Toolkit: Installation and Usage Guide

||

Table 23. HPC Toolkit environment variables (continued)

Environment variable Used by:

IHPCT_BASE v “gpm_init - Initialize the GPU Performance Monitor runtime
environment” on page 133

v “gpm_start - Identify the starting point of an instrumented region of
code” on page 136

v “gpm_stop - Identify the end point of an instrumented region of code” on
page 139

v “gpm_terminate - Generate GPU Performance Monitoring statistics and
trace files and shut down the GPM runtime environment” on page 142

v “gpm_Tstart - Identify the starting point of an instrumented region of
code” on page 145

v “gpm_Tstop - Identify the end point of an instrumented region of code”
on page 148

v “hpcrun - Launch a program to collect profiling or trace data” on page
122

v “hpcstat - Reports a system-wide summary of hardware performance
counter statistics” on page 124

v “hpctInst - Instrument applications to obtain performance data” on page
128

v “hpmInit, f_hpminit - Initialize the Hardware Performance Monitor
(HPM) run-time environment” on page 153

v “MT_get_allresults - Obtain statistical results” on page 174

v “MT_get_mpi_bytes - Obtain the accumulated number of bytes
transferred” on page 182

v “MT_get_mpi_counts - Obtain the the number of times a function was
called” on page 183

v “MT_get_mpi_name - Returns the name of the specified MPI function” on
page 184

v “MT_get_time - Get the elapsed time” on page 186

v “MT_trace_start, mt_trace_start - Start or resume the collection of trace
events” on page 192

LD_LIBRARY_PATH “hpctInst - Instrument applications to obtain performance data” on page 128

MAX_TRACE_EVENTS “MT_trace_start, mt_trace_start - Start or resume the collection of trace
events” on page 192

MAX_TRACE_RANK “MT_trace_start, mt_trace_start - Start or resume the collection of trace
events” on page 192

MT_BASIC_TRACE “MT_trace_start, mt_trace_start - Start or resume the collection of trace
events” on page 192

OUTPUT_ALL_RANKS “MT_trace_start, mt_trace_start - Start or resume the collection of trace
events” on page 192

POMP_LOOP “hpctInst - Instrument applications to obtain performance data” on page 128

POMP_PARALLEL “hpctInst - Instrument applications to obtain performance data” on page 128

POMP_USER “hpctInst - Instrument applications to obtain performance data” on page 128

TRACE_ALL_EVENTS “MT_trace_start, mt_trace_start - Start or resume the collection of trace
events” on page 192

TRACE_ALL_TASKS “MT_trace_start, mt_trace_start - Start or resume the collection of trace
events” on page 192

TRACEBACK_LEVEL “MT_trace_start, mt_trace_start - Start or resume the collection of trace
events” on page 192

Appendix C. HPC Toolkit environment variables 273

|
|

|
|

|
|

|
|

|
|

|
|

274 High Performance Computing Toolkit: Installation and Usage Guide

Accessibility features for IBM PE Developer Edition

Accessibility features help users who have a disability, such as restricted mobility
or limited vision, to use information technology products successfully.

Accessibility features
The following list includes the major accessibility features in IBM PE Developer
Edition:
v Keyboard-only operation
v Interfaces that are commonly used by screen readers

The IBM Knowledge Center, and its related publications, are accessibility-enabled.
The accessibility features are described in IBM Knowledge Center
(www.ibm.com/support/knowledgecenter).

Keyboard navigation
This product uses standard Microsoft Windows navigation keys.

IBM and accessibility
See the IBM Human Ability and Accessibility Center (www.ibm.com/able) for
more information about the commitment that IBM has to accessibility.

© Copyright IBM Corp. 2008, 2015 275

http://www.ibm.com/support/knowledgecenter/
http://www.ibm.com/able

276 High Performance Computing Toolkit: Installation and Usage Guide

Notices

This information was developed for products and services offered in the US. This
material might be available from IBM in other languages. However, you may be
required to own a copy of the product or product version in that language in order
to access it.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some jurisdictions do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement may
not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those

© Copyright IBM Corporation © IBM 2008, 2015 277

websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you provide in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Director of Licensing
IBM Corporation
North Castle Drive, MD-NC119
Armonk, NY 10504-1785
US

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

The performance data and client examples cited are presented for illustrative
purposes only. Actual performance results may vary depending on specific
configurations and operating conditions.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBMproducts.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

Statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information is for planning purposes only. The information herein is subject to
change before the products described become available.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to actual people or business enterprises is entirely
coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not

278 High Performance Computing Toolkit: Installation and Usage Guide

been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample
programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

© (your company name) (year).
Portions of this code are derived from IBM Corp. Sample Programs.
© Copyright IBM Corp. _enter the year or years_.

Programming interface information
The IBM MPICH product is a complete MPI implementation, based on the MPICH
open source project, designed to comply with all the requirements of the Message
Passing Interface standard, MPI: A Message-Passing Interface Standard, Version 3.0,
University of Tennessee, Knoxville, Tennessee, September 21, 2012. If you believe
that IBM MPICH does not comply with the MPI-3 standard, please contact IBM
Service.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at "Copyright and
trademark information" at www.ibm.com/legal/copytrade.shtml.

Intel, Intel Inside (logos), MMX and Pentium are trademarks or registered
trademarks of Intel Corporation or its subsidiaries in the United States and other
countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

UNIX is a registered trademark of the Open Group in the United States and other
countries.

Terms and conditions for product documentation
Permissions for the use of these publications are granted subject to the following
terms and conditions.

Applicability

These terms and conditions are in addition to any terms of use for the IBM
website.

Personal use

You may reproduce these publications for your personal, noncommercial use
provided that all proprietary notices are preserved. You may not distribute, display

Notices 279

http://www.ibm.com/legal/us/en/copytrade.shtml

or make derivative work of these publications, or any portion thereof, without the
express consent of IBM.

Commercial use

You may reproduce, distribute and display these publications solely within your
enterprise provided that all proprietary notices are preserved. You may not make
derivative works of these publications, or reproduce, distribute or display these
publications or any portion thereof outside your enterprise, without the express
consent of IBM.

Rights

Except as expressly granted in this permission, no other permissions, licenses or
rights are granted, either express or implied, to the publications or any
information, data, software or other intellectual property contained therein.

IBM reserves the right to withdraw the permissions granted herein whenever, in its
discretion, the use of the publications is detrimental to its interest or, as
determined by IBM, the above instructions are not being properly followed.

You may not download, export or re-export this information except in full
compliance with all applicable laws and regulations, including all United States
export laws and regulations.

IBM MAKES NO GUARANTEE ABOUT THE CONTENT OF THESE
PUBLICATIONS. THE PUBLICATIONS ARE PROVIDED "AS-IS" AND WITHOUT
WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING
BUT NOT LIMITED TO IMPLIED WARRANTIES OF MERCHANTABILITY,
NON-INFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.

IBM Online Privacy Statement
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user, or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, see IBM’s Privacy Policy at http://www.ibm.com/privacy and
IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details in the
section entitled “Cookies, Web Beacons and Other Technologies”, and the “IBM

280 High Performance Computing Toolkit: Installation and Usage Guide

http://www.ibm.com/privacy
http://www.ibm.com/privacy/details

Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Privacy policy considerations
IBM Software products, including software as a service solutions, (“Software
Offerings”) may use cookies or other technologies to collect product usage
information, to help improve the end user experience, to tailor interactions with
the end user or for other purposes. In many cases no personally identifiable
information is collected by the Software Offerings. Some of our Software Offerings
can help enable you to collect personally identifiable information. If this Software
Offering uses cookies to collect personally identifiable information, specific
information about this offering’s use of cookies is set forth below.

This Software Offering does not use cookies or other technologies to collect
personally identifiable information.

If the configurations deployed for this Software Offering provide you as customer
the ability to collect personally identifiable information from end users via cookies
and other technologies, you should seek your own legal advice about any laws
applicable to such data collection, including any requirements for notice and
consent.

For more information about the use of various technologies, including cookies, for
these purposes, See IBM’s Privacy Policy at http://www.ibm.com/privacy and
IBM’s Online Privacy Statement at http://www.ibm.com/privacy/details the
section entitled “Cookies, Web Beacons and Other Technologies” and the “IBM
Software Products and Software-as-a-Service Privacy Statement” at
http://www.ibm.com/software/info/product-privacy.

Trademarks
IBM, the IBM logo, and ibm.com® are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at "Copyright and
trademark information" (www.ibm.com/legal/copytrade.shtml).

Intel is a trademark of Intel Corporation or its subsidiaries in the United States and
other countries.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Oracle and/or its affiliates.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

Notices 281

http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/privacy
http://www.ibm.com/privacy/details
http://www.ibm.com/software/info/product-privacy
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

282 High Performance Computing Toolkit: Installation and Usage Guide

Index

A
about this information xi
accessibility 275

keyboard 275
shortcut keys 275

additional trace controls 96
aggregator functions

understanding 84
alphabetical listing

HPC Toolkit environment variables 271
APIs 131

f_hpm_error 151
f_hpminit 153
f_hpmstart 158
f_hpmstartx 160
f_hpmstop 163
f_hpmterminate 165
f_hpmtstart 167
f_hpmtstartx 169
f_hpmtstop 172
gpm_init 133
gpm_start 136
gpm_stop 139
gpm_terminate 142
gpm_tstart 145
gpm_Tstop 148
hpm_error_count 151
hpmInit 153
hpmStart 158
hpmStartx 160
hpmStop 163
hpmTerminate 165
hpmTstart 167
hpmTstartx 169
hpmTstop 172
MT_get_allresults 174
MT_get_calleraddress 177
MT_get_callerinfo 178
MT_get_elapsed_time 180
MT_get_environment 181
MT_get_mpi_bytes 182
MT_get_mpi_counts 183
MT_get_mpi_name 184
MT_get_mpi_time 185
MT_get_time 186
MT_get_tracebufferinfo 187
MT_output_text 188
MT_output_trace 189
MT_trace_event 190
mt_trace_start 192
MT_trace_start 192
mt_trace_stop 194
MT_trace_stop 194

C
Call Graph analysis

using 67
collecting performance data

from a subset of application tasks 4

command and API reference 111
commands 113

gpmlist 114
hpccount 75, 116
hpcrun 122
hpcstat 76, 124
hpctInst 128

compiling and linking with libmpitrace 95
considerations for MPI programs 83, 84, 85

distributor and aggregator interfaces 85
plug-ins shipped with the tool kit 84

controlling traced tasks 96
conventions

file naming 197
conventions and terminology xi
CPU hardware counter multiplexing

understanding 78
customizing MPI profiling data 97

D
data file naming

HPC_OUTPUT_NAME 197
HPC_UNIQUE_FILE_NAME 197

derived metrics 203
defined for POWER8 architecture 203
understanding 79

descriptions
derived metrics 203

disability 275
displaying combined performance data

GPU hardware counter profiling 50
distributor and aggregator interfaces

understanding 85
distributor functions

understanding 83

E
Eclipse PTP

using 29

F
f_hpm_error API 151
f_hpminit API 153
f_hpmstart API 158
f_hpmstartx API 160
f_hpmstop API 163
f_hpmterminate API 165
f_hpmtstart API 167
f_hpmtstartx API 169
f_hpmtstop API 172
file naming conventions 197
file naming examples 198

© Copyright IBM Corp. 2008, 2015 283

G
generating a log file 21
getting the plug-ins to work 87
GPM API

using 91
GPM preload library

using 90
GPM under the control of HPM

using 92
gpm_init API 133
gpm_start API 136
gpm_stop API 139
gpm_terminate API 142
gpm_tstart API 145
gpm_Tstop API 148
gpmlist command 114
GPU hardware counter profiling

displaying combined performance data 50
instrumenting the application 47
preparing an application 47
running the instrumenting application 48
viewing data 49

GPU hardware counters
using in HPCT 89

GPU hardware counters profiling
using 47

graphical performance analysis tools
hpctView application 19
using 19

H
handling multithreaded program instrumentation issues 82
handling of overlap issues 81
hardware performance counter data

viewing 45
hardware performance counter plug-ins 83
hardware performance counter tools 75

CPU hardware counter multiplexing 78
derived metrics 79
hpccount command 75
hpcstat command 76
inclusive and exclusive event counts 80
inheritance, understanding 80
measurement overhead 82
MFlop issues 79
multithreaded program instrumentation 82
overlap issues 81
parent-child relationships 81
using the libhpc library 77

hardware performance counters
instrumenting your application 107

HPC Toolkit
introduction 3

HPC Toolkit environment variables
alphabetical listing 271

hpccount command 116
using 75

hpcrun command 122
hpcstat command 124

using 76
hpctInst command 128
hpctInst utility

instrumenting your application 107
hpctView

using 26

hpctView application
instrumenting 29
opening the application executable 25
preparing an application for analysis 24
using 23
viewing performance data 38
working with the application 25

hpm_error_count API 151
hpmInit API 153
hpmStart API 158
hpmStartx API 160
hpmStop API 163
hpmTerminate API 165
hpmTstart API 167
hpmTstartx API 169
hpmTstop API 172

I
I/O profiling

instrumenting your application 109
using 61

I/O profiling environment variables
setting 99

I/O profiling library
using 99

I/O profiling library module options
performance data file naming 104
running your application 104
specifying 101

IBM High Performance Computing Toolkit
introduction 3

IBM HPC Toolkit
introduction 3

IBM HPC Toolkit hpctView application
installing 17

IBM HPC Toolkit xCAT kit
installing 16

IBM HPCT plug-in for Eclipse PTP
installing 17

inclusive and exclusive event counts
understanding 80

inheritance
understanding 80

installation media contents 13
installing

hpctView application 15
IBM HPC Toolkit hpctView application 17
IBM HPCT plug-in for Eclipse PTP 17
runtime and the CLI instrumentation tools 15
the IBM HPC Toolkit xCAT kit 16

installing the IBM HPC Toolkit on Linux systems 15
instrumentation models 5
instrumented application

running 30
instrumenting

hpctView application 29
instrumenting the application

GPU hardware counter profiling 47
using I/O profiling 61
using MPI profiling 53

instrumenting your application for hardware performance
counters 107

instrumenting your application for I/O profiling 109
instrumenting your application for MPI profiling 108
instrumenting your application using the hpctInst utility 107

284 High Performance Computing Toolkit: Installation and Usage Guide

introduction
IBM High Performance Computing Toolkit 3

introduction to the IBM HPC Toolkit 3

L
libhpc library

using 77
library module options

specifying 101
limitations and restrictions xvii
Linux systems

installing the IBM HPC Toolkit 15
log file

generating 21

M
measurement overhead

understanding 82
media contents

installation 13
MFlop issues

understanding 79
MPI profiling

instrumenting your application 108
using 53

MPI profiling data
customizing 97

MPI profiling library
using 95

MPI profiling utility functions
understanding 98

MPI programs
considerations 83
general considerations 83

MPI trace tool
performance data file naming 98

MT_get_allresults API 174
MT_get_calleraddress API 177
MT_get_callerinfo API 178
MT_get_elapsed_time API 180
MT_get_environment API 181
MT_get_mpi_bytes API 182
MT_get_mpi_counts API 183
MT_get_mpi_name API 184
MT_get_mpi_time API 185
MT_get_time API 186
MT_get_tracebufferinfo API 187
MT_output_text API 188
MT_output_trace API 189
MT_trace_event API 190
mt_trace_start API 192
MT_trace_start API 192
mt_trace_stop API 194
MT_trace_stop API 194
multithreaded program instrumentation

handling issues 82

O
overlap issues

handling 81
overview

instrumentation models 5
performance measurement tools 4

P
parent-child relationships

understanding 81
performance data file naming

HPC_OUTPUT_NAME 197
HPC_UNIQUE_FILE_NAME 197
I/O profiling library module options 104
understanding 98

performance measurement tools 4
platforms and software levels

supported 11
plug-ins

getting them to work 87
hardware performance counter 83

plug-ins shipped
with the tool kit 84

POWER8 architecture
derived metrics 203
derived metrics, events, groups 203
supported events and groups 204

preparing an application
for GPU hardware counter profiling 47

preparing an application for analysis 24
preparing an application for MPI profiling 53
preparing an application for profiling 41

using I/O profiling 61
preparing you application

using Call Graph Analysis 67
prerequisite information xii, xiii
profiling

hardware performance counter 41
preparing an application 41

profiling the MPI calls in an application 53

R
related information xii

Parallel Tools Platform component xiii
restrictions and limitations xvii
running the application

using Call Graph Analysis 67
using I/O profiling 63
using MPI profiling 55

running the instrumented application 30
using hardware performance counter profiling 43

running the instrumenting application
GPU hardware counter profiling 48

running your application
I/O profiling library module options 104

S
setting I/O profiling environment variables 99
setting the user environment 6
shortcut keys

keyboard 275
supported events and groups

POWER8 architecture 204
supported platforms and software levels 11

T
tool kit

plug-ins shipped 84

Index 285

tools
hardware performance counter 75

traced tasks
controlling 96

trademarks 281

U
understanding

distributor and aggregator interfaces 85
understanding aggregator functions 84
understanding CPU hardware counter multiplexing 78
understanding derived metrics 79
understanding distributor functions 83
understanding inclusive and exclusive event counts 80
understanding inheritance 80
understanding measurement overhead 82
understanding MFlop issues 79
understanding MPI profiling utility functions 98
understanding parent-child relationships 81
understanding why user-defined plug-ins are useful 85
user environment

setting up 6
user-defined plug-ins

understanding 85
why they are useful 85

using
hpctView application 23

using Call Graph analysis 67
viewing gprof data 69
viewing the Call Graph 68

using Call Graph Analysis
preparing you application 67
running the application 67
viewing profile data 67

using Eclipse PTP 29
using GPU hardware counter profiling 47
using GPU hardware counters in HPCT 89

using GPM under the control of HPM 92
using the GPM API 91
using the GPM preload library 90

using hardware performance counter profiling 41
running the instrumented application 43

using hardware performance counters in profiling
instrumenting the application 41

using hpctView 26
using I/O profiling 61

instrumenting the application 61
preparing an application for profiling 61
running the application 63
viewing I/O Data 64

using MPI profiling 53
instrumenting the application 53
preparing an application 53
running the application 55
viewing MPI profiling data 57
viewing MPI traces 58

using the I/O profiling library 99
collecting performance data from a subset of application

tasks 4
performance data file naming 104
running your application 104
setting I/O profiling environment variables 99
specifying module options 101

using the libhpc library 77
using the MPI profiling library 95, 96

additional trace controls 96

using the MPI profiling library (continued)
compiling and linking with libmpitrace 95
customizing MPI profiling data 97
performance data file naming 98
understanding MPI profiling utility functions 98

V
viewing data

GPU hardware counter profiling 49
viewing gprof data

using Call Graph analysis 69
viewing hardware performance counter data 45
viewing I/O Data

using I/O profiling 64
viewing MPI profiling data

using MPI profiling 57
viewing MPI traces

using MPI profiling 58
viewing performance data

hpctView application 38
viewing profile data

using Call Graph Analysis 67
viewing the Call Graph

using Call Graph analysis 68

W
what are derived metrics 79
who should read this information xi
working with the hpctView application 25

286 High Performance Computing Toolkit: Installation and Usage Guide

IBM®

Product Number: 5765-PD2

Printed in USA

SC23-7287-01

	Contents
	Figures
	Tables
	About this information
	Who should read this information
	Conventions and terminology used in this information
	Prerequisite and related information
	Parallel Tools Platform component

	How to send your comments

	Summary of changes
	Limitations and restrictions
	Part 1. Introduction
	Chapter 1. Introduction to the IBM HPC Toolkit
	The HPC Toolkit
	Collecting performance data from a subset of parallel application tasks
	Performance measurement tools
	Instrumentation models
	Setting the user environment

	Part 2. Installation
	Chapter 2. Supported platforms and software levels
	Chapter 3. Installation media contents
	Chapter 4. Installing the IBM High Performance Computing Toolkit
	Installing the IBM HPC Toolkit on Linux systems
	Installing the IBM HPC Toolkit xCAT kit
	Installing the IBM HPC Toolkit hpctView application
	Installing the IBM HPCT plug-in for Eclipse PTP

	Part 3. Using the IBM PE Developer Edition graphical performance analysis tools
	Chapter 5. Generating a log file
	Chapter 6. Using the hpctView application
	Preparing an application for analysis
	Working with the application
	Opening the application executable
	Using hpctView
	Using Eclipse PTP
	Instrumenting the application
	Running the instrumented application
	Viewing performance data

	Chapter 7. Using hardware performance counter profiling
	Preparing an application for profiling
	Instrumenting the application
	Running the instrumented application
	Viewing hardware performance counter data

	Chapter 8. Using GPU hardware counter profiling
	Preparing an application for profiling
	Instrumenting the application
	Running the instrumented application
	Viewing GPU hardware performance counter data
	Displaying combined CPU and GPU performance data

	Chapter 9. Using MPI profiling
	Preparing an application for profiling
	Instrumenting the application
	Running the application
	Viewing MPI profiling data
	Viewing MPI traces

	Chapter 10. Using I/O profiling
	Preparing an application for profiling
	Instrumenting the application
	Running the application
	Viewing I/O Data

	Chapter 11. Using Call Graph analysis
	Preparing the application
	Running the application
	Viewing profile data
	Viewing the Call Graph
	Viewing gprof data

	Part 4. The hardware performance counter tools
	Chapter 12. Using the hardware performance counter tools
	Using the hpccount command
	Using the hpcstat command
	Using the libhpc library
	Understanding CPU hardware counter multiplexing
	Understanding derived metrics
	Understanding MFlop issues
	Understanding inheritance
	Understanding inclusive and exclusive event counts
	Understanding parent-child relationships
	Handling of overlap issues
	Understanding measurement overhead
	Handling multithreaded program instrumentation issues
	Considerations for MPI programs
	General considerations
	Hardware performance counter plug-ins
	Understanding distributor functions
	Understanding aggregator functions
	Plug-ins shipped with the tool kit
	Why user-defined plug-ins are useful
	Understanding the distributor and aggregator interfaces
	Getting the plug-ins to work

	Chapter 13. Using GPU hardware counters in HPCT
	Part 5. The MPI and I/O profiling libraries
	Chapter 14. Using the MPI profiling library
	Compiling and linking with libmpitrace
	Controlling traced tasks
	Additional trace controls
	Customizing MPI profiling data
	Understanding MPI profiling utility functions
	Performance data file naming

	Chapter 15. Using the I/O profiling library
	Preparing your application
	Setting I/O profiling environment variables
	Specifying I/O profiling library module options
	Running your application
	Performance data file naming

	Part 6. Using the hpctInst command
	Chapter 16. Instrumenting your application using hpctInst
	Instrumenting your application for hardware performance counters
	Instrumenting your application for MPI profiling
	Instrumenting your application for I/O profiling

	Part 7. Command and API reference
	Chapter 17. Commands
	gpmlist - Lists the available events and metrics
	hpccount - Report hardware performance counter statistics for an application
	hpcrun - Launch a program to collect profiling or trace data
	hpcstat - Reports a system-wide summary of hardware performance counter statistics
	hpctInst - Instrument applications to obtain performance data

	Chapter 18. Application programming interfaces
	gpm_init - Initialize the GPU Performance Monitor runtime environment
	gpm_start - Identify the starting point of an instrumented region of code
	gpm_stop - Identify the end point of an instrumented region of code
	gpm_terminate - Generate GPU Performance Monitoring statistics and trace files and shut down the GPM runtime environment
	gpm_Tstart - Identify the starting point of an instrumented region of code
	gpm_Tstop - Identify the end point of an instrumented region of code
	hpm_error_count, f_hpm_error - Verify a call to a libhpc function
	hpmInit, f_hpminit - Initialize the Hardware Performance Monitor (HPM) run-time environment
	hpmStart, f_hpmstart - Identify the starting point for an instrumented region of code
	hpmStartx, f_hpmstartx - Identify the starting point for an instrumented region of code
	hpmStop, f_hpmstop - Identify the end point of an instrumented region of code
	hpmTerminate, f_hpmterminate - Generate HPM statistic files and shut down HPM
	hpmTstart, f_hpmtstart - Identify the starting point for an instrumented region of code
	hpmTstartx, f_hpmtstartx - Identify the starting point for an instrumented region of code
	hpmTstop, f_hpmtstop - Identify the end point of an instrumented region of code
	MT_get_allresults - Obtain statistical results
	MT_get_calleraddress - Obtain the address of the caller of an MPI function
	MT_get_callerinfo - Obtain source code information
	MT_get_elapsed_time - Obtains elapsed time
	MT_get_environment - Returns run-time environment information
	MT_get_mpi_bytes - Obtain the accumulated number of bytes transferred
	MT_get_mpi_counts - Obtain the the number of times a function was called
	MT_get_mpi_name - Returns the name of the specified MPI function
	MT_get_mpi_time - Obtain elapsed time
	MT_get_time - Get the elapsed time
	MT_get_tracebufferinfo - Obtain information about MPI trace buffer usage
	MT_output_text - Generate performance statistics
	MT_output_trace - Control whether an MPI trace file is created
	MT_trace_event - Control whether an MPI trace event is generated
	MT_trace_start, mt_trace_start - Start or resume the collection of trace events
	MT_trace_stop, mt_trace_stop - Suspend the collection of trace events

	Part 8. Appendixes
	Appendix A. Performance data file naming
	File naming conventions
	File naming examples

	Appendix B. Derived metrics, events, and groups supported on POWER8 architecture
	Derived metrics defined for POWER8 architecture
	Events and groups supported on POWER8 architecture

	Appendix C. HPC Toolkit environment variables
	Accessibility features for IBM PE Developer Edition
	Accessibility features
	Keyboard navigation
	IBM and accessibility

	Notices
	Programming interface information
	Trademarks
	Terms and conditions for product documentation
	IBM Online Privacy Statement
	Privacy policy considerations
	Trademarks

	Index
	A
	C
	D
	E
	F
	G
	H
	I
	L
	M
	O
	P
	R
	S
	T
	U
	V
	W

